The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (2012 vol.11)
pp: 663-678
Oscar Trullols-Cruces , Universitat Politècnica de Catalunya, Barcelona
Marco Fiore , INSA Lyon - INRIA, Lyon
Jose M. Barcelo-Ordinas , Universitat Politècnica de Catalunya, Barcelona
ABSTRACT
We consider a complex (i.e., nonlinear) road scenario where users aboard vehicles equipped with communication interfaces are interested in downloading large files from road-side Access Points (APs). We investigate the possibility of exploiting opportunistic encounters among mobile nodes so to augment the transfer rate experienced by vehicular downloaders. To that end, we devise solutions for the selection of carriers and data chunks at the APs, and evaluate them in real-world road topologies, under different AP deployment strategies. Through extensive simulations, we show that carry&forward transfers can significantly increase the download rate of vehicular users in urban/suburban environments, and that such a result holds throughout diverse mobility scenarios, AP placements and network loads.
INDEX TERMS
Vehicular networks, cooperative downloading, delay tolerant networking, carry & forward transmission.
CITATION
Oscar Trullols-Cruces, Marco Fiore, Jose M. Barcelo-Ordinas, "Cooperative Download in Vehicular Environments", IEEE Transactions on Mobile Computing, vol.11, no. 4, pp. 663-678, April 2012, doi:10.1109/TMC.2011.100
REFERENCES
[1] F. Aidouni, M. Latapy, and C. Magnien, “Ten Weeks in the Life of an eDonkey Server,” Proc. Int'l Workshop Peer-to-Peer Systems (HOTP2P '09), May 2009.
[2] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” Proc. ACM Sigcomm, Aug. 2003.
[3] A. Nandan, S. Das, G. Pau, M. Gerla, and M.Y. Sanadidi, “Co-Operative Downloading in Vehicular Ad-Hoc Wireless Networks,” Proc. Second Ann. Conf. Wireless Network Systems and Services (WONS '05), Jan. 2005.
[4] M. Sardari, F. Hendessi, and F. Fekri, “Infocast: A New Paradigm for Collaborative Content Distribution from Roadside Units to Vehicular Networks,” Proc. Sixth Ann. IEEE Comm. Soc. Conf. Sensor, Mesh and Ad Hoc Comm. and Networks (SECON '09), 2009.
[5] O. Trullols-Cruces, J. Morillo, J. Barcelo-Ordinas, and J. Garcia-Vidal, “A Cooperative Vehicular Network Framework,” Proc. IEEE Int'l Conf. Comm. (ICC '09), June 2009.
[6] B.B. Chen and M.C. Chan, “MobTorrent: A Framework for Mobile Internet Access from Vehicles,” Proc. IEEE INFOCOM, Apr. 2009.
[7] J. Zhao and G. Cao, “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks,” Proc. IEEE INFOCOM, Apr. 2006.
[8] S. Yoon, H.Q. Ngo, and C. Qiao, “On ‘Shooting’ a Moving Vehicle with Data Flows,” Proc. IEEE Mobile Networking for Vehicular Environments (MOVE '07), May 2007.
[9] F. Malandrino, C. Casetti, C.-F. Chiasserini, and M. Fiore, “Content Downloading in Vehicular Networks: What Really Matters,” Proc. IEEE INFOCOM, Apr. 2011.
[10] Z. Chen, H. Kung, and D. Vlah, “Ad Hoc Relay Wireless Networks over Moving Vehicles on Highways,” Proc. ACM MobiHoc, Oct. 2001.
[11] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “MaxProp: Routing for Vehicle-Based Disruption-Tolerant Networks,” Proc. IEEE INFOCOM, Apr. 2006.
[12] H.-Y. Huang, P.-E. Luo, M. Li, D. Li, X. Li, W. Shu, and M.-Y. Wu, “Performance Evaluation of SUVnet with Real-Time Traffic Data,” IEEE Trans. Vehicular Technology, vol. 56, no. 6, pp. 3381-3396, Nov. 2007.
[13] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, “MDDV: A Mobility-Centric Data Dissemination Algorithm for Vehicular Networks,” Proc. First ACM Int'l Workshop Vehicular Ad Hoc Networks (VANET '04), Oct. 2004.
[14] A. Skordylis and N. Trigoni, “Delay-Bounded Routing in Vehicular Ad Hoc Networks,” Proc. ACM MobiHoc, May 2008.
[15] J. Zhang, Q. Zhang, and W. Jia, “A Novel MAC Protocol for Cooperative Downloading in Vehicular Networks,” Proc. IEEE Global Telecomm. Conf. (GlobeCom '07), Dec. 2007.
[16] S. Ahmed and S.S. Kanhere, “VANETCODE: Network Coding to Enhance Cooperative Downloading in Vehicular Ad Hoc Networks,” Proc. ACM Int'l Conf. Wireless Comm. and Mobile Computing (IWCMC '06), July 2006.
[17] G. Marfia, G. Pau, E. Giordano, E. De Sena, and M. Gerla, “Evaluating Vehicle Network Strategies for Downtown Portland: Opportunistic Infrastructure and Importance of Realistic Mobility Models,” Proc. First Int'l MobiSys Workshop Mobile Opportunistic Networking (MoBiOpp '07), June 2007.
[18] Y. Ding, C. Wang, and L. Xiao, “A Static-Node Assisted Adaptive Routing Protocol in Vehicular Networks,” Proc. Fourth ACM Int'l Workshop Vehicular Ad Hoc Networks (VANET '07), Sept. 2007.
[19] C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve, “Data Aggregation and Roadside Unit Placement for a Vanet Traffic Information System,” Proc. Fifth ACM Int'l Workshop VehiculAr Inter-NETworking (VANET '08), Sept. 2008.
[20] Z. Zheng, P. Sinha, and S. Kumar, “Alpha Coverage: Bounding the Interconnection Gap for Vehicular Internet Access,” Proc. IEEE INFOCOM, Apr. 2009.
[21] Z. Zheng, Z. Lu, P. Sinha, and S. Kumar, “Maximizing the Contact Opportunity for Vehicular Internet Access,” Proc. IEEE INFOCOM, Mar. 2010.
[22] O. Trullols, M. Fiore, C. Casetti, C.-F. Chiasserini, and J.M. Barcelo-Ordinas, “Planning Roadside Infrastructure for Information Dissemination in Intelligent Transportation Systems,” Computer Comm., vol. 33, pp. 432-442, Jan. 2010.
[23] A. Fleisher, “On Prediction and Urban Traffic,” Papers in Regional Science, vol. 7, no. 1, pp. 43-50, Dec. 1961.
[24] K. Ashok and M.E. Ben-Akiva, “Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping of Path Flows and Link Flows,” Transportation Science, vol. 36, no. 2, pp. 184-198, May 2002.
[25] H. Yin, S.C. Wong, J. Xu, and C.K. Wong, “Urban Traffic Flow Prediction Using a Fuzzy-Neural Approach,” Transportation Research C, vol. 10, no. 2, pp. 85-98, Apr. 2002.
[26] J. Ott and D. Kutscher, “Drive-Thru Internet: IEEE 802.11b for Automobile Users,” Proc. IEEE INFOCOM, Mar. 2004.
[27] ETHZ Traces, http://www.lst.inf.ethz.ch/research/ad-hoc car-traces, 2011.
[28] N. Cetin, A. Burri, and K. Nagel, “A Large-Scale Multi-Agent Traffic Microsimulation Based on Queue Model,” Proc. Swiss Transport Research Conf. (STRC '03), Mar. 2003.
[29] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and Evaluation of an Unplanned 802.11b Mesh Network,” Proc. ACM MobiCom, Aug. 2005.
[30] V. Bychkovsky, B. Hull, A.K. Miu, H. Balakrishnan, and S. Madden, “A Measurement Study of Vehicular Internet Access Using In Situ Wi-Fi Networks,” Proc. ACM MobiCom, Sept. 2006.
[31] VANET Chunk Scheduling Simulator, http://personals.ac.upc. edutrullols, 2011.
[32] R. Gass, J. Scott, and C. Diot, “Measurements of In-Motion 802.11 Networking,” Proc. Seventh IEEE Workshop Mobile Computing Systems and Applications (WMCSA/HotMobile '06), Apr. 2006.
[33] F. Hui and P. Mohapatra, “Experimental Characterization of Multi-Hop Communications in Vehicular Ad Hoc Networks,” Proc. Second ACM Int'l Workshop Vehicular Ad Hoc Networks (VANET '05), Sept. 2005.
[34] M. Fiore and J. Härri, “The Networking Shape of Vehicular Mobility,” Proc. ACM MobiHoc, May 2008.
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool