The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - February (2008 vol.7)
pp: 171-186
ABSTRACT
There is a vast literature on the throughput analysisof the IEEE 802.11 MAC protocol. However, very little has beendone on investigating the interplay between the collision avoidancemechanisms of the 802.11 MAC protocol and the dynamicsof upper-layer transport protocols. In this paper we tackle thisissue from an analytical, simulative and experimental perspective.Specifically, we develop Markov chain models to compute thedistribution of the number of active stations in an 802.11 WLANwhen long-lived TCP connections compete with finite load UDPflows. By embedding these distributions in the MAC protocolmodelling, we derive approximate but accurate expressions ofthe TCP and UDP throughput. We validate the model accuracythrough performance tests carried out in a real WLAN for a widerange of configurations. Our analytical model and the supportingexperimental outcomes show that: i) the total TCP throughput isbasically independent of the number of open TCP connections,and the aggregate TCP traffic can be equivalently modelled astwo saturated flows; and ii) in the saturated regime n UDP flowsobtain about n-times the aggregate throughput achieved by theTCP flows, independently of the overall number of persistentTCP connections. Index Terms--802.11 MAC protocol, TCP,UDP, performance modelling, Markov chain.
CITATION
Raffaele Bruno, Marco Conti, Enrico Gregori, "Throughput Analysis and Measurements in IEEE 802.11 WLANs with TCP and UDP Traffic Flows", IEEE Transactions on Mobile Computing, vol.7, no. 2, pp. 171-186, February 2008, doi:10.1109/TMC.2007.70718
REFERENCES
[1] IEEE 802.11, The Working Group for WLAN Standards, http://grouper.ieee.org/groups/80211/, Apr. 2006.
[2] IEEE Standard 802.11e, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification/Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, IEEE, Sept. 2005.
[3] Y. Xiao, “IEEE 802.11n: Enhancements for Higher Throughput in Wireless LANs,” IEEE Wireless Comm. Magazine, vol. 12, no. 6, pp.82-91, Dec. 2005.
[4] R. Karrer, A. Sabharwal, and E. Knightly, “Enabling Large-Scale Wireless Broadband: The Case for TAPs,” ACM Computer Comm. Rev., vol. 34, no. 1, pp. 27-34, Jan. 2004.
[5] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE J. Selected Areas in Comm., vol. 18, no. 9, pp. 1787-1800, Mar. 2000.
[6] F. Calí, M. Conti, and E. Gregori, “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit,” IEEE/ACM Trans. Networking, vol. 8, no. 6, pp. 785-799, 2000.
[7] R. Bruno, M. Conti, and E. Gregori, “Optimization of Efficiency and Energy Consumption in p-Persistent CSMA-Based Wireless LANs,” IEEE Trans. Mobile Computing, vol. 1, no. 1, pp. 10-31, Mar. 2002.
[8] Y. Tay and K. Chua, “A Capacity Analysis for the IEEE 802.11 MAC Protocol,” Wireless Networks, vol. 7, no. 2, pp. 159-171, Mar./Apr. 2001.
[9] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New Insights from a Fixed-Point Analysis of Single-Cell IEEE 802.11 WLANs,” Proc. IEEE INFOCOM, vol. 3, pp. 1550-1561, Mar. 2005.
[10] F. Alizadeh-Shabdiz and S. Subramaniam, “A Finite Load Analytical Model for IEEE 802.11 Distributed Coordination Function MAC,” Proc. First Workshop Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt '03), Mar. 2003.
[11] K. Duffy, D. Malone, and D. Leith, “Modeling the 802.11 Distributed Coordinated Function in Non-Saturated Conditions,” IEEE Comm. Letters, vol. 9, no. 8, pp. 715-717, Aug. 2005.
[12] G. Cantieni, Q. Ni, C. Barakat, and T. Turletti, “Performance Analysis under Finite Load and Improvements for Multirate 802.11,” Elsevier Computer Comm. J., vol. 28, pp. 1095-1109, June 2005.
[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: A Simple Model and Its Empirical Validation,” IEEE/ACM Trans. Networking, vol. 8, no. 2, pp. 133-145, Apr. 2000.
[14] A. Abouzeid, S. Roy, and M. Azizoglou, “Comprehensive Performance Analysis of a TCP Session over a Wireless Fading Link with Queueing,” IEEE Trans. Wireless Comm., vol. 2, no. 2, pp.344-356, Mar. 2003.
[15] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, and P. Sinha, “Understanding TCP Fairness over Wireless LAN,” Proc. IEEE INFOCOM, vol. 2, pp. 863-872, 2003.
[16] M. Rossi, R. Vicenzi, and M. Zorzi, “Accurate Analysis of TCP on Channels with Memory and Finite Round-Trip Delay,” IEEE Trans. Wireless Comm., vol. 3, no. 2, pp. 627-640, Mar. 2004.
[17] M. Garetto, R. Lo Cigno, M. Meo, and M. Marsan, “Closed Queueing Network Models of Interacting Long-Lived TCP Flows,” IEEE/ACM Trans. Networking, vol. 12, no. 2, pp. 300-311, Apr. 2004.
[18] E. Altman, K. Avrachenkov, and C. Barakat, “A Stochastic Model of TCP/IP with Stationary Random Losses,” IEEE/ACM Trans. Networking, vol. 13, no. 2, pp. 356-369, Apr. 2005.
[19] R. Bruno, M. Conti, and E. Gregori, “Design of an Enhanced Access Point to Optimize TCP Performance in Wi-Fi Hotspot Networks,” ACM/Springer Wireless Networks J., vol. 13, no. 2, pp.259-274, Apr. 2007.
[20] P. Chatzimisios, A. Boucouvalas, and V. Vitsas, “IEEE 802.11 Packet Delay: A Finite Retry Limit Analysis,” Proc. IEEE Global Comm. Conf. (Globecom '03), vol. 2, pp. 950-954, Dec. 2003.
[21] V. Vishnevsky and A. Lyakhov, “IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration,” Cluster Computing, vol. 5, no. 2, pp. 133-144, Apr. 2002.
[22] E. Ziouva and T. Antonakopoulos, “CSMA/CA Performance under High Traffic Conditions: Throughput and Delay Analysis,” Elsevier Computer Comm. J., vol. 25, pp. 313-321, Feb. 2002.
[23] C. Foh and W. Tantra, “Comments on IEEE 802.11 Saturation Throughput Analysis with Freezing of Backoff Counters,” IEEE Comm. Letters, vol. 9, no. 2, pp. 130-132, Feb. 2005.
[24] G. Bianchi and I. Tinnirello, “Remarks on IEEE 802.11 DCF Performance Analysis,” IEEE Comm. Letters, vol. 9, no. 8, pp. 765-767, Aug. 2005.
[25] Y. Xiao, “A Simple and Effective Priority Scheme for IEEE 802.11,” IEEE Comm. Letters, vol. 7, pp. 70-72, Feb. 2003.
[26] J. Hui and M. Devetsikiotis, “A Unified Model for the Performance Analysis of IEEE 802.11e EDCA,” IEEE Trans. Comm., vol. 53, no. 9, pp. 1498-1510, Sept. 2005.
[27] O. Tickoo and B. Sikdar, “A Queueing Model for Finite Load IEEE 802.11 Random Access,” Proc. IEEE Int'l Conf. Comm. (ICC '04), vol. 1, pp. 175-179, June 2004.
[28] R. Bruno, M. Conti, and E. Gregori, “Analytical Modeling of TCP Clients in Wi-Fi Hot Spot Networks,” Proc. IFIP-TC6 Networking Conf., pp. 626-637, May 2004.
[29] R. Bruno, M. Conti, and E. Gregori, “Modeling TCP Throughput over Wireless LANs,” Proc. 17th IMACS World Congress on Scientific Computation, Applied Math. and Simulation, July 2005.
[30] R. Bruno, M. Conti, and E. Gregori, “Performance Modeling and Measurements of TCP Transfer Throughput in 802.11-Based WLANs,” Proc. Ninth ACM/IEEE Int'l Symp. Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM '06), Oct. 2006.
[31] S. Choi, K. Park, and C. Kim, “Performance Impact of Interlayer Dependence in Infrastructure WLANs,” IEEE Trans. Mobile Computing, vol. 5, no. 7, pp. 829-845, July 2006.
[32] J. Yu and S. Choi, “Modeling and Analysis of TCP Dynamics over IEEE 802.11 WLAN,” Proc. Fourth IFIP/IEEE Ann. Int'l Conf. Wireless On-Demand Network Systems and Services (WONS '07), Jan. 2007.
[33] D. Miorandi, A. Kherani, and E. Altman, “A Queueing Model for HTTP Traffic over IEEE 802.11 WLANs,” Elsevier Computer Networks J., vol. 50, no. 1, pp. 63-79, Jan. 2006.
[34] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement,” Proc. IEEE INFOCOM, pp. 599-607, June 2002.
[35] M. Arranz, R. Aguero, L. Munoz, and P. Mahonen, “Behavior of UDP-Based Applications over IEEE 802.11 Wireless Networks,” Proc. 12th Int'l Symp. Personal, Indoor and Mobile Radio Comm. (PIMRC '01), vol. 2, pp. 72-77, 2001.
[36] S. Garg and M. Kappes, “An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 802.11b Networks,” Proc. IEEE Wireless Comm. and Networking Conf. (WCNC '03), vol. 3, pp. 1748-1753, Mar. 2003.
[37] R. Bruno, M. Conti, and E. Gregori, “Throughput Analysis of UDP and TCP Flows in IEEE 802.11b WLANs: A Simple Model and Its Validation,” Proc. FIRB-Perf Workshop Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems, pp. 54-63, Sept. 2005.
[38] H. Balakrishnan, N. Padmanabhan, S. Seshan, M. Stemm, and R. Katz, “TCP Behavior of a Busy Internet Server: Analysis and Improvements,” Proc. IEEE INFOCOM, vol. 1, pp. 252-262, 1998.
[39] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in the Internet,” IEEE/ACM Trans. Networking, vol. 7, no. 4, pp. 458-472, Aug. 1999.
[40] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single-Node Case,” IEEE/ACM Trans. Networking, vol. 1, no. 2, pp.344-357, June 1993.
[41] S. Floyd and V. Jacobson, “Link-Sharing and Resource Management Models for Packet Networks,” IEEE/ACM Trans. Networking, vol. 3, no. 4, pp. 365-386, Aug. 1995.
[42] D. Stidialis and A. Varma, “Efficient Fair Queueing Algorithms for Packet-Switched Networks,” IEEE/ACM Trans. Networking, vol. 6, no. 2, pp. 175-185, Apr. 1998.
[43] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,” IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993.
[44] R. Bruno, M. Conti, and E. Gregori, “Throughput Analysis and Measurements in IEEE 802.11 WLANs with TCP and UDP Traffic Flows,” technical report, IIT CNR, http://bruno1.iit.cnr.it/ brunotechreport.html , Sept. 2006.
[45] D. Heyman and M. Sobel, Stochastic Models in Operations Research, vol. 1. McGraw-Hill, 2001.
[46] W. Stevens, “The Protocols,” TCP/IP Illustrated, vol. 1. Addison-Wesley, Dec. 1993.
[47] ANSI/IEEE Standard 802.11b, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification/Amendment 2: Higher-Speed Physical Layer (PHY) in the 2.4 GHz Band, IEEE, Nov. 2001.
[48] D. Bovet and M. Cesati, Understanding the Linux Kernel, third ed. O'Reilly, Nov. 2005.
[49] G. Xylomenos and G. Polyzos, “TCP and UDP Performance over a Wireless LAN,” Proc. IEEE INFOCOM, vol. 2, pp. 439-446, Mar. 1999.
[50] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaranen, “TCP Performance Issues over Wireless Links,” IEEE Comm. Magazine, vol. 39, no. 4, pp. 52-58, Apr. 2001.
[51] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance Anomaly of 802.11b,” Proc. IEEE INFOCOM, vol. 2, pp. 836-843, 2003.
[52] M. Bottigliengo, C. Casetti, C.-F. Chiasserini, and M. Meo, “Smart Traffic Scheduling in 802.11 WLANs with Access Point,” Proc. 58th IEEE Vehicular Technology Conf. (VTC 2003-Fall), vol. 4, pp.2227-2231, Oct.6-9, 2003.
[53] M. Bottigliengo, C. Casetti, C.-F. Chiasserini, and M. Meo, “Short-Term Fairness for TCP Flows in 802.11b WLANs,” Proc. IEEE INFOCOM, vol. 2, pp. 1383-1392, Mar. 2004.
[54] D. Leith, P. Clifford, D. Malone, and A. Ng, “TCP Fairness in 802.11e WLANs,” IEEE Comm. Letters, vol. 9, no. 11, pp. 964-966, Nov. 2005.
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool