This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
MultiComm: Finding Community Structurein Multi-Dimensional Networks
April 2014 (vol. 26 no. 4)
pp. 929-941
Yunming Ye, Shenzhen Grad. Sch., Dept. of Comput. Sci., Harbin Inst. of Technol., Shenzhen, China
Michael K. Ng, Dept. of Math., Hong Kong Baptist Univ., Kowloon, China
Xutao Li, Shenzhen Grad. Sch., Dept. of Comput. Sci., Harbin Inst. of Technol., Shenzhen, China
The main aim of this paper is to develop a community discovery scheme in a multi-dimensional network for data mining applications. In online social media, networked data consists of multiple dimensions/entities such as users, tags, photos, comments, and stories. We are interested in finding a group of users who interact significantly on these media entities. In a co-citation network, we are interested in finding a group of authors who relate to other authors significantly on publication information in titles, abstracts, and keywords as multiple dimensions/entities in the network. The main contribution of this paper is to propose a framework (MultiComm)to identify a seed-based community in a multi-dimensional network by evaluating the affinity between two items in the same type of entity (same dimension)or different types of entities (different dimensions)from the network. Our idea is to calculate the probabilities of visiting each item in each dimension, and compare their values to generate communities from a set of seed items. In order to evaluate a high quality of generated communities by the proposed algorithm, we develop and study a local modularity measure of a community in a multi-dimensional network. Experiments based on synthetic and real-world data sets suggest that the proposed framework is able to find a community effectively. Experimental results have also shown that the performance of the proposed algorithm is better in accuracy than the other testing algorithms in finding communities in multi-dimensional networks.
Index Terms:
Communities,Tensile stress,Vectors,Probability,Algorithm design and analysis,Media,Data mining,affinity calculation,Multi-dimensional networks,community,transition probability tensors,local modularity
Citation:
Yunming Ye, Michael K. Ng, Xutao Li, "MultiComm: Finding Community Structurein Multi-Dimensional Networks," IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 4, pp. 929-941, April 2014, doi:10.1109/TKDE.2013.48
Usage of this product signifies your acceptance of the Terms of Use.