This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Inference-Based Naïve Bayes: Turning Naïve Bayes Cost-Sensitive
Oct. 2013 (vol. 25 no. 10)
pp. 2302-2313
A fundamental challenge for developing a cost-sensitive Naïve Bayes method is how to effectively classify an instance based on the cost-sensitive threshold computed under the assumption of knowing the instance's true classification probabilities and the highly biased estimations of these probabilities by the Naïve Bayes method. To address this challenge, we develop a cost-sensitive Naïve Bayes method from a novel perspective of inferring the order relation (e.g., greater than or equal to, less than) between an instance's true classification probability of belonging to the class of interest and the cost-sensitive threshold. Our method learns and infers the order relation from the training data and classifies the instance based on the inferred order relation. We empirically show that our proposed method significantly outperforms major existing methods for turning Naïve Bayes cost-sensitive through experiments with UCI data sets and a real-world case study.
Index Terms:
Decision support systems,Turning,Abstracts,Estimation,Training data,Indexes,Naïve Bayes,Decision support systems,Turning,Abstracts,Estimation,Training data,Indexes,classification,Cost-sensitive classification
Citation:
"Inference-Based Naïve Bayes: Turning Naïve Bayes Cost-Sensitive," IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 10, pp. 2302-2313, Oct. 2013, doi:10.1109/TKDE.2012.196
Usage of this product signifies your acceptance of the Terms of Use.