This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Protecting Sensitive Labels in Social Network Data Anonymization
March 2013 (vol. 25 no. 3)
pp. 633-647
Mingxuan Yuan, Hong Kong University of Science and Technology, Hong Kong
Lei Chen, Hong Kong University of Science and Technology, Hong Kong
Philip S. Yu, North Carolina State University, Raleigh
Ting Yu, North Carolina State University, Raleigh
Privacy is one of the major concerns when publishing or sharing social network data for social science research and business analysis. Recently, researchers have developed privacy models similar to k-anonymity to prevent node reidentification through structure information. However, even when these privacy models are enforced, an attacker may still be able to infer one's private information if a group of nodes largely share the same sensitive labels (i.e., attributes). In other words, the label-node relationship is not well protected by pure structure anonymization methods. Furthermore, existing approaches, which rely on edge editing or node clustering, may significantly alter key graph properties. In this paper, we define a k-degree-l-diversity anonymity model that considers the protection of structural information as well as sensitive labels of individuals. We further propose a novel anonymization methodology based on adding noise nodes. We develop a new algorithm by adding noise nodes into the original graph with the consideration of introducing the least distortion to graph properties. Most importantly, we provide a rigorous analysis of the theoretical bounds on the number of noise nodes added and their impacts on an important graph property. We conduct extensive experiments to evaluate the effectiveness of the proposed technique.
Index Terms:
Social network services,Privacy,Publishing,Information processing,anonymous,Social networks,privacy
Citation:
Mingxuan Yuan, Lei Chen, Philip S. Yu, Ting Yu, "Protecting Sensitive Labels in Social Network Data Anonymization," IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 3, pp. 633-647, March 2013, doi:10.1109/TKDE.2011.259
Usage of this product signifies your acceptance of the Terms of Use.