The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (2013 vol.25)
pp: 502-513
Zheng Lu , Shanghai Jiao Tong University, Shanghai
Hongyuan Zha , Georgia Institute of Technology, Atlanta
Xiaokang Yang , Shanghai Jiao Tong University, Shanghai
Weiyao Lin , Shanghai Jiao Tong University, Shanghai
Zhaohui Zheng , Yahoo! Labs, Beijing
ABSTRACT
For a broad-topic and ambiguous query, different users may have different search goals when they submit it to a search engine. The inference and analysis of user search goals can be very useful in improving search engine relevance and user experience. In this paper, we propose a novel approach to infer user search goals by analyzing search engine query logs. First, we propose a framework to discover different user search goals for a query by clustering the proposed feedback sessions. Feedback sessions are constructed from user click-through logs and can efficiently reflect the information needs of users. Second, we propose a novel approach to generate pseudo-documents to better represent the feedback sessions for clustering. Finally, we propose a new criterion )“Classified Average Precision (CAP)” to evaluate the performance of inferring user search goals. Experimental results are presented using user click-through logs from a commercial search engine to validate the effectiveness of our proposed methods.
INDEX TERMS
Search engines, Web search, Search methods, Feedback, Optimization methods, Search problems, Information retrieval, classified average precision, User search goals, feedback sessions, pseudo-documents, restructuring search results
CITATION
Zheng Lu, Hongyuan Zha, Xiaokang Yang, Weiyao Lin, Zhaohui Zheng, "A New Algorithm for Inferring User Search Goals with Feedback Sessions", IEEE Transactions on Knowledge & Data Engineering, vol.25, no. 3, pp. 502-513, March 2013, doi:10.1109/TKDE.2011.248
REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. ACM Press, 1999.
[2] R. Baeza-Yates, C. Hurtado, and M. Mendoza, "Query Recommendation Using Query Logs in Search Engines," Proc. Int'l Conf. Current Trends in Database Technology (EDBT '04), pp. 588-596, 2004.
[3] D. Beeferman and A. Berger, "Agglomerative Clustering of a Search Engine Query Log," Proc. Sixth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '00), pp. 407-416, 2000.
[4] S. Beitzel, E. Jensen, A. Chowdhury, and O. Frieder, "Varying Approaches to Topical Web Query Classification," Proc. 30th Ann. Int'l ACM SIGIR Conf. Research and Development (SIGIR '07), pp. 783-784, 2007.
[5] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li, "Context-Aware Query Suggestion by Mining Click-Through," Proc. 14th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '08), pp. 875-883, 2008.
[6] H. Chen and S. Dumais, "Bringing Order to the Web: Automatically Categorizing Search Results," Proc. SIGCHI Conf. Human Factors in Computing Systems (SIGCHI '00), pp. 145-152, 2000.
[7] C.-K Huang, L.-F Chien, and Y.-J Oyang, "Relevant Term Suggestion in Interactive Web Search Based on Contextual Information in Query Session Logs," J. Am. Soc. for Information Science and Technology, vol. 54, no. 7, pp. 638-649, 2003.
[8] T. Joachims, "Evaluating Retrieval Performance Using Clickthrough Data," Text Mining, J. Franke, G. Nakhaeizadeh, and I. Renz, eds., pp. 79-96, Physica/Springer Verlag, 2003.
[9] T. Joachims, "Optimizing Search Engines Using Clickthrough Data," Proc. Eighth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '02), pp. 133-142, 2002.
[10] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and G. Gay, "Accurately Interpreting Clickthrough Data as Implicit Feedback," Proc. 28th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '05), pp. 154-161, 2005.
[11] R. Jones and K.L. Klinkner, "Beyond the Session Timeout: Automatic Hierarchical Segmentation of Search Topics in Query Logs," Proc. 17th ACM Conf. Information and Knowledge Management (CIKM '08), pp. 699-708, 2008.
[12] R. Jones, B. Rey, O. Madani, and W. Greiner, "Generating Query Substitutions," Proc. 15th Int'l Conf. World Wide Web (WWW '06), pp. 387-396, 2006.
[13] U. Lee, Z. Liu, and J. Cho, "Automatic Identification of User Goals in Web Search," Proc. 14th Int'l Conf. World Wide Web (WWW '05), pp. 391-400, 2005.
[14] X. Li, Y.-Y Wang, and A. Acero, "Learning Query Intent from Regularized Click Graphs," Proc. 31st Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '08), pp. 339-346, 2008.
[15] M. Pasca and B.-V Durme, "What You Seek Is what You Get: Extraction of Class Attributes from Query Logs," Proc. 20th Int'l Joint Conf. Artificial Intelligence (IJCAI '07), pp. 2832-2837, 2007.
[16] B. Poblete and B.-Y Ricardo, "Query-Sets: Using Implicit Feedback and Query Patterns to Organize Web Documents," Proc. 17th Int'l Conf. World Wide Web (WWW '08), pp. 41-50, 2008.
[17] D. Shen, J. Sun, Q. Yang, and Z. Chen, "Building Bridges for Web Query Classification," Proc. 29th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '06), pp. 131-138, 2006.
[18] X. Wang and C.-X Zhai, "Learn from Web Search Logs to Organize Search Results," Proc. 30th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '07), pp. 87-94, 2007.
[19] J.-R Wen, J.-Y Nie, and H.-J Zhang, "Clustering User Queries of a Search Engine," Proc. Tenth Int'l Conf. World Wide Web (WWW '01), pp. 162-168, 2001.
[20] H.-J Zeng, Q.-C He, Z. Chen, W.-Y Ma, and J. Ma, "Learning to Cluster Web Search Results," Proc. 27th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '04), pp. 210-217, 2004.
8 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool