This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Region-Based Foldings in Process Discovery
Jan. 2013 (vol. 25 no. 1)
pp. 192-205
Marc Solé, Technical University of Catalonia (UPC), Barcelona
Josep Carmona, Technical University of Catalonia (UPC), Barcelona
A central problem in the area of Process Mining is to obtain a formal model that represents the processes that are conducted in a system. If realized, this simple motivation allows for powerful techniques that can be used to formally analyze and optimize a system, without the need to resort to its semiformal and sometimes inaccurate specification. The problem addressed in this paper is known as Process Discovery: to obtain a formal model from a set of system executions. The theory of regions is a valuable tool in process discovery: it aims at learning a formal model (Petri nets) from a set of traces. On its genuine form, the theory is applied on an automaton and therefore one should convert the traces into an acyclic automaton in order to apply these techniques. Given that the complexity of the region-based techniques depends on the size of the input automata, revealing the underlying cycles and folding the initial automaton can incur in a significant complexity alleviation of the region-based techniques. In this paper, we follow this idea by incorporating region information in the cycle detection algorithm, enabling the identification of complex cycles that cannot be obtained efficiently with state-of-the-art techniques. The experimental results obtained by the devised tool suggest that the techniques presented in this paper are a big step into widening the application of the theory of regions in Process Mining for industrial scenarios.
Index Terms:
Petri nets,Data mining,Complexity theory,Proposals,Data structures,Noise,Learning automata,transition system folding,Process discovery,region theory
Citation:
Marc Solé, Josep Carmona, "Region-Based Foldings in Process Discovery," IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 1, pp. 192-205, Jan. 2013, doi:10.1109/TKDE.2011.192
Usage of this product signifies your acceptance of the Terms of Use.