This Article 
 Bibliographic References 
 Add to: 
Decentralized Probabilistic Text Clustering
Oct. 2012 (vol. 24 no. 10)
pp. 1848-1861
Odysseas Papapetrou, Technical University of Crete, Chania
Wolf Siberski, L3S Research Center, Hannover
Norbert Fuhr, University of Duisburg-Essen, Duisburg
Text clustering is an established technique for improving quality in information retrieval, for both centralized and distributed environments. However, traditional text clustering algorithms fail to scale on highly distributed environments, such as peer-to-peer networks. Our algorithm for peer-to-peer clustering achieves high scalability by using a probabilistic approach for assigning documents to clusters. It enables a peer to compare each of its documents only with very few selected clusters, without significant loss of clustering quality. The algorithm offers probabilistic guarantees for the correctness of each document assignment to a cluster. Extensive experimental evaluation with up to 1 million peers and 1 million documents demonstrates the scalability and effectiveness of the algorithm.
Index Terms:
Clustering algorithms,Peer to peer computing,Probabilistic logic,Frequency estimation,Indexing,Computational modeling,text clustering.,Distributed clustering
Odysseas Papapetrou, Wolf Siberski, Norbert Fuhr, "Decentralized Probabilistic Text Clustering," IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 10, pp. 1848-1861, Oct. 2012, doi:10.1109/TKDE.2011.120
Usage of this product signifies your acceptance of the Terms of Use.