
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Hong Zeng, YiuMing Cheung, "SemiSupervised Maximum Margin Clustering with Pairwise Constraints," IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 5, pp. 926939, May, 2012.  
BibTex  x  
@article{ 10.1109/TKDE.2011.68, author = { Hong Zeng and YiuMing Cheung}, title = {SemiSupervised Maximum Margin Clustering with Pairwise Constraints}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {24}, number = {5}, issn = {10414347}, year = {2012}, pages = {926939}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.68}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  SemiSupervised Maximum Margin Clustering with Pairwise Constraints IS  5 SN  10414347 SP926 EP939 EPD  926939 A1  Hong Zeng, A1  YiuMing Cheung, PY  2012 KW  quadratic programming KW  concave programming KW  convex programming KW  gradient methods KW  learning (artificial intelligence) KW  pattern clustering KW  semisupervised maximum margin clustering KW  pairwise constraint KW  kmeans clustering method KW  spectral clustering method KW  performance enhancement KW  maximum margin framework KW  supervised learning KW  maximum margin idea KW  loss function KW  optimization problem KW  nonconvex problem KW  constrained concaveconvex procedure KW  convex quadratic program KW  subgradient projection optimization method KW  Clustering algorithms KW  Robustness KW  Estimation KW  Labeling KW  Partitioning algorithms KW  Optimization methods KW  constrained concaveconvex procedure. KW  Semisupervised clustering KW  pairwise constraints KW  maximum margin clustering VL  24 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, "SemiSupervised Graph Clustering: A Kernel Approach," Proc. Int'l Conf. Machine Learning, pp. 457464, 2005.
[2] M. Ester, R. Ge, B.J. Gao, Z. Hu, and B. BenMoshe, "Joint Cluster Analysis of Attribute Data and Relationship Data: The Connected KCenter Problem," Proc. SIAM Int'l Conf. Data Mining, pp. 2546, 2006.
[3] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell, "Distance Metric Learning with Application to Clustering with SideInformation," Advances in Neural Information Processing Systems, vol. 15, pp. 521528, 2003.
[4] N. Shental, T. Hertz, D. Weinshall, and M. Pavel, "Adjustment Learning and Relevant Component Analysis," Proc. European Conf. Computer Vision, pp. 776792, 2002.
[5] S.C.H. Hoi, W. Liu, M.R. Lyu, and W.Y. Ma, "Learning Distance Metrics with Contextual Constraints for Image Retrieval," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 20722078, 2006.
[6] M. Bilenko, S. Basu, and R.J. Mooney, "Integrating Constraints and Metric Learning in SemiSupervised Clustering," Proc. Int'l Conf. Machine Learning, pp. 8188, 2004.
[7] K. Wagstaff, C. Cardie, and S. Schroedl, "Constrained KMeans Clustering with Background Knowledge," Proc. Int'l Conf. Machine Learning, pp. 577584, 2001.
[8] S. Basu, M. Bilenko, and R.J. Mooney, "A Probabilistic Framework for SemiSupervised Clustering," Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 5968, 2004.
[9] N. Shental, A. BarHillel, D. Weinshall, "Computing Gaussian Mixture Models with EM Using Equivalence Constraints," Advances in Neural Information Processing Systems, vol. 16, pp. 465472, 2004.
[10] M. Law, A. Topchy, and A.K. Jain, "ModelBased Clustering with Probabilistic Constraints," Proc. SIAM Int'l Conf. Data Mining, pp. 641645, 2005.
[11] Z. Lu and M.A. CarreiraPerpinan, "Constrained Spectral Clustering through Affinity Propagation," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 18, 2008.
[12] N. Kumar and K. Kummamuru, "Semisupervised Clustering with Metric Learning Using Relative Comparisons," IEEE Trans. Knowledge and Data Eng., vol. 20, no. 4, pp. 496503, Apr. 2008.
[13] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, "Maximum Margin Clustering," Advances in Neural Information Processing Systems, vol. 17, pp. 15371544, 2005.
[14] H. Valizadegan and R. Jin, "Generalized Maximum Margin Clustering and Unsupervised Kernel Learning," Advances in Neural Information Processing Systems, vol. 19, pp. 14171424, 2007.
[15] K. Zhang, I.W. Tsang, and J.T. Kwok, "Maximum Margin Clustering Made Practical," Proc. Int'l Conf. Machine Learning, pp. 11191126, 2007.
[16] B. Zhao, F. Wang, and C. Zhang, "Efficient Multiclass Maximum Margin Clustering," Proc. Int'l Conf. Machine Learning, pp. 12481255, 2008.
[17] Y.F. Li, I.W. Tsang, J.T. Kwok, and Z.H. Zhou, "Tighter and Convex Maximum Margin Clustering," Proc. Int'l Conf. Artificial Intelligence and Statistics, pp. 344351, 2009.
[18] Y. Hu, J. Wang, N. Yu, and X.S. Hua, "Maximum Margin Clustering with Pairwise Constraints," Proc. IEEE Int'l Conf. Data Mining, pp. 253262, 2008.
[19] S.C.H. Hoi, R. Jin, and M.R. Lyu, "Learning Nonparametric Kernel Matrices from Pairwise Constraints," Proc. Int'l Conf. Machine Learning, pp. 361368, 2007.
[20] K. Crammer and Y. Singer, "On the Algorithmic Implementation of Multiclass KernelBased Vector Machines," J. Machine Learning Research, vol. 2, pp. 265292, 2002.
[21] L. Xu and D. Schuurmans, "Unsupervised and SemiSupervised MultiClass Support Vector Machines," Proc. Nat'l Conf. Artificial Intelligence, pp. 904910, 2005.
[22] R. Yan, J. Zhang, J. Yang, and A. Hauptmann, "A Discriminative Learning Framework with Pairwise Constraints for Video Object Classification," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 578593, Apr. 2006.
[23] N. Nguyen and R. Caruana, "Improving Classification with Pairwise Constraints: A MarginBased Approach," Proc. European Conf. Machine Learning and Knowledge Discovery in Databases, pp. 113124, 2008.
[24] T. Joachims, "Training Linear SVMs in Linear Time," Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 217226, 2006.
[25] A.L. Yuille and A. Rangarajan, "The ConcaveConvex Procedure," Neural Computation, vol. 15, no. 4, pp. 915936, 2003.
[26] A.J. Smola, S.V.N. Vishwanathan, and T. Hofmann, "Kernel Methods for Missing Variables," Proc. Int'l Workshop Artificial Intelligence and Statistics, pp. 325332, 2005.
[27] K. Zhang, I.W. Tsang, and J.T. Kwok, "Maximum Margin Clustering Made Practical," IEEE Trans. Neural Networks, vol. 20, no. 4, pp. 583596, Apr. 2009.
[28] R. Collobert, F. Sinz, J. Weston, and L. Bottou, "Large Scale Transductive SVMs," J. Machine Learning Research, vol. 7, pp. 16871712, 2006.
[29] M. Karlen, J. Weston, A. Erkan, and R. Collobert, "Large Scale Manifold Transduction," Proc. Int'l Conf. Machine Learning, pp. 448455, 2008.
[30] A. Zien, U. Brefeld, and T. Scheffer, "Transductive Support Vector Machines for Structured Variables," Proc. Int'l Conf. Machine Learning, pp. 11831190, 2007.
[31] K. Weinberger, J. Blitzer, and L. Saul, "Distance Metric Learning for Large Margin Nearest Neighbor Classification," Advances in Neural Information Processing Systems, vol. 18, pp. 14731480, 2006.
[32] S. ShalevShwartz, Y. Singer, and N. Srebro, "Pegasos: Primal Wstimated SubGradient Solver for SVM," Proc. Int'l Conf. Machine Learning, pp. 807814, 2007.
[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
[34] D.P. Bertsekas, Convex Analysis and Optimization. Athena Scientific, 2003.
[35] W. Hersh, C. Buckley, T.J. Leone, and D. Hickam, "OHSUMED: An Interactive Retrieval Evaluation and New Large Test Collection for Research," Proc. Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval, pp. 192201, 1994.
[36] A. Strehl and J. Ghosh, "Cluster EnsemblesA Knowledge Reuse Framework for Combining Multiple Partitions," J. Machine Learning Research, vol. 3, pp. 583617, 2003.