
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Ninghui Li, Tiancheng Li, Suresh Venkatasubramanian, "Closeness: A New Privacy Measure for Data Publishing," IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 7, pp. 943956, July, 2010.  
BibTex  x  
@article{ 10.1109/TKDE.2009.139, author = {Ninghui Li and Tiancheng Li and Suresh Venkatasubramanian}, title = {Closeness: A New Privacy Measure for Data Publishing}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {22}, number = {7}, issn = {10414347}, year = {2010}, pages = {943956}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.139}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Closeness: A New Privacy Measure for Data Publishing IS  7 SN  10414347 SP943 EP956 EPD  943956 A1  Ninghui Li, A1  Tiancheng Li, A1  Suresh Venkatasubramanian, PY  2010 KW  Privacy preservation KW  data anonymization KW  data publishing KW  data security. VL  22 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] C. Aggarwal, "On $k$ Anonymity and the Curse of Dimensionality," Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 901909, 2005.
[2] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and A. Zhu, "Achieving Anonymity via Clustering," Proc. ACM Symp. Principles of Database Systems (PODS), pp. 153162, 2006.
[3] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications. PrenticeHall, Inc., 1993.
[4] R.J. Bayardo and R. Agrawal, "Data Privacy through Optimal $k$ Anonymization," Proc. Int'l Conf. Data Eng. (ICDE), pp. 217228, 2005.
[5] F. Bacchus, A. Grove, J.Y. Halpern, and D. Koller, "From Statistics to Beliefs," Proc. Nat'l Conf. Artificial Intelligence (AAAI), pp. 602608, 1992.
[6] J.W. Byun, Y. Sohn, E. Bertino, and N. Li, "Secure Anonymization for Incremental Datasets," Proc. VLDB Workshop Secure Data Management (SDM), pp. 4863, 2006.
[7] B.C. Chen, K. LeFevre, and R. Ramakrishnan, "Privacy Skyline: Privacy with Multidimensional Adversarial Knowledge," Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 770781, 2007.
[8] G.T. Duncan and D. Lambert, "DisclosureLimited Data Dissemination," J. Am. Statistical Assoc., vol. 81, pp. 1028, 1986.
[9] B.C.M. Fung, K. Wang, and P.S. Yu, "TopDown Specialization for Information and Privacy Preservation," Proc. Int'l Conf. Data Eng. (ICDE), pp. 205216, 2005.
[10] C.R. Givens and R.M. Shortt, "A Class of Wasserstein Metrics for Probability Distributions," Michigan Math J., vol. 31, pp. 231240, 1984.
[11] V.S. Iyengar, "Transforming Data to Satisfy Privacy Constraints," Proc. ACM SIGKDD, pp. 279288, 2002.
[12] D. Kifer and J. Gehrke, "Injecting Utility into Anonymized Datasets," Proc. ACM SIGMOD, pp. 217228, 2006.
[13] N. Koudas, D. Srivastava, T. Yu, and Q. Zhang, "Aggregate Query Answering on Anonymized Tables," Proc. Int'l Conf. Data Eng. (ICDE), pp. 116125, 2007.
[14] S.L. Kullback and R.A. Leibler, "On Information and Sufficiency," Annals of Math. Statistics, vol. 22, pp. 7986, 1951.
[15] D. Lambert, "Measures of Disclosure Risk and Harm," J. Official Statistics, vol. 9, pp. 313331, 1993.
[16] K. LeFevre, D. DeWitt, and R. Ramakrishnan, "Incognito: Efficient FullDomain $k$ Anonymity," Proc. ACM SIGMOD, pp. 4960, 2005.
[17] K. LeFevre, D. DeWitt, and R. Ramakrishnan, "Mondrian Multidimensional $k$ Anonymity," Proc. Int'l Conf. Data Eng. (ICDE), p. 25, 2006.
[18] K. LeFevre, D. DeWitt, and R. Ramakrishnan, "WorkloadAware Anonymization," Proc. ACM SIGKDD, pp. 277286, 2006.
[19] N. Li, T. Li, and S. Venkatasubramanian, "$t$ Closeness: Privacy beyond $k$ Anonymity and $\ell$ Diversity," Proc. Int'l Conf. Data Eng. (ICDE), pp. 106115, 2007.
[20] T. Li and N. Li, "Injector: Mining Background Knowledge for Data Anonymization," Proc. Int'l Conf. Data Eng. (ICDE), 2008.
[21] T. Li and N. Li, "Towards Optimal $k$ Anonymization," Data and Knowledge Eng., vol. 65, pp. 2239, 2008.
[22] T. Li, N. Li, and J. Zhang, "Modeling and Integrating Background Knowledge in Data Anonymization," Proc. Int'l Conf. Data Eng. (ICDE), 2009.
[23] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, "$\ell$ Diversity: Privacy Beyond $k$ Anonymity," Proc. Int'l Conf. Data Eng. (ICDE), p. 24, 2006.
[24] D.J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J.Y. Halpern, "WorstCase Background Knowledge for PrivacyPreserving Data Publishing," Proc. Int'l Conf. Data Eng. (ICDE), pp. 126135, 2007.
[25] A. Meyerson and R. Williams, "On the Complexity of Optimal $k$ Anonymity," Proc. ACM Symp. Principles of Database Systems (PODS), pp. 223228, 2004.
[26] M.E. Nergiz, M. Atzori, and C. Clifton, "Hiding the Presence of Individuals from Shared Databases," Proc. ACM SIGMOD, pp. 665676, 2007.
[27] H. Park and K. Shim, "Approximate Algorithms for $k$ Anonymity," Proc. ACM SIGMOD, pp. 6778, 2007.
[28] V. Rastogi, S. Hong, and D. Suciu, "The Boundary between Privacy and Utility in Data Publishing," Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 531542, 2007.
[29] Y. Rubner, C. Tomasi, and L.J. Guibas, "The Earth Mover's Distance as a Metric for Image Retrieval," Int'l J. Computer Vision, vol. 40, no. 2, pp. 99121, 2000.
[30] P. Samarati, "Protecting Respondent's Privacy in Microdata Release," IEEE Trans. Knowledge and Data Eng., vol. 13, no. 6, pp. 10101027, Nov./Dec. 2001.
[31] L. Sweeney, "Achieving $k$ Anonymity Privacy Protection Using Generalization and Suppression," Int'l J. Uncertainty, Fuzziness and KnowledgeBased Systems, vol. 10, no. 6, pp. 571588, 2002.
[32] L. Sweeney, "$k$ Anonymity: A Model for Protecting Privacy," Int'l J. Uncertainty, Fuzziness and KnowledgeBased Systems, vol. 10, no. 5, pp. 557570, 2002.
[33] T.M. Truta and B. Vinay, "Privacy Protection: PSensitive $k$ Anonymity Property," Proc. Int'l Workshop Privacy Data Management (ICDE Workshops), 2006.
[34] A. Asuncion and D.J. Newman, UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearnMLRepository.html , 2007.
[35] M.P., Wand and M.C. Jones, Kernel Smoothing (Monographs on Statistics and Applied Probability). Chapman & Hall, 1995.
[36] K. Wang, B.C.M. Fung, and P.S. Yu, "TemplateBased Privacy Preservation in Classification Problems," Proc. Int'l Conf. Data Mining (ICDM), pp. 466473, 2005.
[37] R.C.W. Wong, A.W.C. Fu, K. Wang, and J. Pei, "Minimality Attack in Privacy Preserving Data Publishing," Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 543554, 2007.
[38] R.C.W. Wong, J. Li, A.W.C. Fu, and K. Wang, "($\alpha$ , $k$ )Anonymity: An Enhanced $k$ Anonymity Model for Privacy Preserving Data Publishing," Proc. ACM SIGKDD, pp. 754759, 2006.
[39] X. Xiao and Y. Tao, "Anatomy: Simple and Effective Privacy Preservation," Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 139150, 2006.
[40] X. Xiao and Y. Tao, "Personalized Privacy Preservation," Proc. ACM SIGMOD, pp. 229240, 2006.
[41] X. Xiao and Y. Tao, "$m$ Invariance: Towards Privacy Preserving Republication of Dynamic Datasets," Proc. ACM SIGMOD, pp. 689700, 2007.
[42] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.W.C. Fu, "UtilityBased Anonymization Using Local Recoding," Proc. ACM SIGKDD, pp. 785790, 2006.