
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Yufei Tao, Hekang Chen, Xiaokui Xiao, Shuigeng Zhou, Donghui Zhang, "ANGEL: Enhancing the Utility of Generalization for Privacy Preserving Publication," IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 7, pp. 10731087, July, 2009.  
BibTex  x  
@article{ 10.1109/TKDE.2009.65, author = {Yufei Tao and Hekang Chen and Xiaokui Xiao and Shuigeng Zhou and Donghui Zhang}, title = {ANGEL: Enhancing the Utility of Generalization for Privacy Preserving Publication}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {21}, number = {7}, issn = {10414347}, year = {2009}, pages = {10731087}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.65}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  ANGEL: Enhancing the Utility of Generalization for Privacy Preserving Publication IS  7 SN  10414347 SP1073 EP1087 EPD  10731087 A1  Yufei Tao, A1  Hekang Chen, A1  Xiaokui Xiao, A1  Shuigeng Zhou, A1  Donghui Zhang, PY  2009 KW  Privacy KW  generalization KW  ANGEL. VL  21 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] C.C. Aggarwal, “On kAnonymity and the Curse of Dimensionality,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 901909, 2005.
[2] C.C. Aggarwal and P.S. Yu, “A Condensation Approach to Privacy Preserving Data Mining,” Proc. Int'l Conf. Extending Database Technology (EDBT), pp. 183199, 2004.
[3] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and A. Zhu, “Achieving Anonymity via Clustering,” Proc. ACM Symp. Principles of Database Systems (PODS), pp. 153162, 2006.
[4] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu, “Anonymizing Tables,” Proc. Int'l Conf. Database Theory (ICDT), pp. 246258, 2005.
[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic Databases,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 143154, 2002.
[6] R. Agrawal and R. Srikant, “PrivacyPreserving Data Mining,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 439450, 2000.
[7] R. Bayardo and R. Agrawal, “Data Privacy through Optimal kAnonymization,” Proc. Int'l Conf. Data Eng. (ICDE), pp. 217228, 2005.
[8] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “An Access Control Model Supporting Periodicity Constraints and Temporal Reasoning,” ACM Trans. Database Systems (TODS), vol. 23, no. 3 pp. 231285, 1998.
[9] E. Bertino and E. Ferrari, “Secure and Selective Dissemination of XML Documents,” ACM Trans. Information and System Security, vol. 5, no. 3, pp. 290331, 2002.
[10] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical Privacy: The Sulq Framework,” Proc. ACM Symp. Principles of Database Systems (PODS), pp. 128138, 2005.
[11] B.C. Chen, R. Ramakrishnan, and K. LeFevre, “Privacy Skyline: Privacy with Multidimensional Adversarial Knowledge,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 770781, 2007.
[12] Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu, “On Multidimensional $k$ Anonymity with Local Recoding Generalization,” Proc. Int'l Conf. Data Eng. (ICDE), pp. 14221424, 2007.
[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to Sensitivity in Private Data Analysis,” Proc. Theory of Cryptography Conf. (TCC), pp. 265284, 2006.
[14] A.V. Evfimievski, J. Gehrke, and R. Srikant, “Limiting Privacy Breaches in Privacy Preserving Data Mining,” Proc. ACM Symp. Principles of Database Systems (PODS), pp. 211222, 2003.
[15] B.C.M. Fung, K. Wang, and P.S. Yu, “TopDown Specialization for Information and Privacy Preservation,” Proc. Int'l Conf. Data Eng. (ICDE), pp. 205216, 2005.
[16] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “Fast Data Anonymization with Low Information Loss,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 758769, 2007.
[17] T. Iwuchukwu and J.F. Naughton, “kAnonymization as Spatial Indexing: Toward Scalable and Incremental Anonymization,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp.746757, 2007.
[18] V. Iyengar, “Transforming Data to Satisfy Privacy Constraints,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 279288, 2002.
[19] W. Jiang and C. Clifton, “A Secure Distributed Framework for Achieving kAnonymity,” The VLDB J., vol. 15, no. 4, pp. 316333, 2006.
[20] D. Kifer and J. Gehrke, “Injecting Utility into Anonymized Data sets,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 217228, 2006.
[21] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “WorkloadAware Anonymization,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, 2006.
[22] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan, “Incognito: Efficient FullDomain $k$ Anonymity,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 4960, 2005.
[23] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan, “Mondrian Multidimensional $k$ Anonymity,” Proc. Int'l Conf. Data Eng. (ICDE), pp. 277286, 2006.
[24] N. Li, T. Li, and S. Venkatasubramanian, “tCloseness: Privacy beyond kAnonymity and lDiversity,” Proc. Int'l Conf. Data Eng. (ICDE), pp. 106115, 2007.
[25] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “lDiversity: Privacy beyond kAnonymity,” Proc. Int'l Conf. Data Eng. (ICDE), 2006.
[26] D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Halpern, “WorstCase Background Knowledge in Privacy,” Proc. Int'l Conf. Data Eng. (ICDE), 2007.
[27] A. Meyerson and R. Williams, “On the Complexity of Optimal kAnonymity,” Proc. ACM Symp. Principles of Database Systems (PODS), pp. 223228, 2004.
[28] S.U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani, “Towards Robustness in Query Auditing,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 151162, 2006.
[29] M.E. Nergiz, M. Atzori, and C. Clifton, “Hiding the Presence of Individuals from Shared Databases,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 665676, 2007.
[30] H. Park and K. Shim, “Approximate Algorithms for kAnonymity,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 6778, 2007.
[31] V. Rastogi, S. Hong, and D. Suciu, “The Boundary between Privacy and Utility in Data Publishing,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 531542, 2007.
[32] J. Rothe, “Some Facets of Complexity Theory and Cryptography: A FiveLecture Tutorial,” ACM Computing Surveys, vol. 34, no. 4 pp. 504549, 2002.
[33] P. Samarati, “Protecting Respondents' Identities in Microdata Release,” IEEE Trans. Knowledge and Data Eng., vol. 13, no. 6, pp.10101027, Nov./Dec. 2001.
[34] L. Sweeney, “Achieving $k$ Anonymity Privacy Protection Using Generalization and Suppression,” Int'l J. Uncertainty, Fuzziness, and KnowledgeBased Systems, vol. 10, no. 5, pp. 571588, 2002.
[35] L. Sweeney, “kAnonymity: A Model for Protecting Privacy,” Int'l J. Uncertainty, Fuzziness, and KnowledgeBased Systems, vol. 10, no. 5, pp. 557570, 2002.
[36] J. Vaidya and C. Clifton, “PrivacyPreserving $k$ Means Clustering over Vertically Partitioned Data,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 206215, 2003.
[37] K. Wang and B.C.M. Fung, “Anonymizing Sequential Releases,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 414423, 2006.
[38] R.C.W. Wong, A.W.C. Fu, K. Wang, and J. Pei, “Minimality Attack in Privacy Preserving Data Publishing,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 543554, 2007.
[39] R.C.W. Wong, J. Li, A.W.C. Fu, and K. Wang, “(Alpha, k)Anonymity: An Enhanced kAnonymity Model for Privacy Preserving Data Publishing,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 754759, 2006.
[40] X. Xiao and Y. Tao, “Anatomy: Simple and Effective Privacy Preservation,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp.139150, 2006.
[41] X. Xiao and Y. Tao, “Personalized Privacy Preservation,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 229240, 2006.
[42] X. Xiao and Y. Tao, “$m$ Invariance: Towards Privacy Preserving RePublication of Dynamic Data Sets,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 689700, 2007.
[43] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.W.C. Fu, “UtilityBased Anonymization Using Local Recoding,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 785790, 2006.
[44] C. Yao, X.S. Wang, and S. Jajodia, “Checking for $k$ Anonymity Violation by Views,” Proc. Int'l Conf. Very Large Data Bases (VLDB), pp. 910921, 2005.
[45] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu, “Aggregate Query Answering on Anonymized Tables,” Proc. Int'l Conf. Data Eng. (ICDE), pp. 116125, 2007.