This Article 
 Bibliographic References 
 Add to: 
Cost-Based Predictive Spatiotemporal Join
February 2009 (vol. 21 no. 2)
pp. 220-233
Wook-Shin Han, Kyungpook National University, Daegu
Jaehwa Kim, Kyungpook National University, Daegu
Byung Suk Lee, University of Vermont, Burlington
Yufei Tao, Chinese University of Hong Kong, Hong Kong
Ralf Rantzau, IBM, San Jose
Volker Markl, IBM, San Jose
A predictive spatiotemporal join finds all pairs of moving objects satisfying a join condition on future time and space. In this paper, we present CoPST, the first and foremost algorithm for such a join using two spatiotemporal indexes. In a predictive spatiotemporal join, the bounding boxes of the outer index are used to perform window searches on the inner index, and these bounding boxes enclose objects with increasing laxity over time. CoPST constructs globally tightened bounding boxes “on the fly

[1] S. Arumugam and C. Jermaine, “Closest-Point-of-Approach Join for Moving Object Histories,” Proc. 22nd Int'l Conf. Data Eng. (ICDE), 2006.
[2] P. Bakalov, M. Hadjieleftheriou, and V. Tsotras, “Time Relaxed Spatiotemporal Trajectory Joins,” Proc. 13th ACM Int'l Workshop Geographic Information Systems (GIS), 2005.
[3] S.-H. Jeong et al., “An Experimental Performance Evaluation of Spatio-Temporal Join Strategies,” Trans. GIS, vol. 9, no. 2, 2005.
[4] Y. Tao, J. Sun, and D. Papadias, “Analysis of Predictive Spatio-Temporal Queries,” ACM Trans. Database Systems, vol. 28, no. 4, 2003.
[5] Y. Tao et al., “The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries,” Proc. 29th Int'l Conf. Very Large Data Bases (VLDB), 2003.
[6] J. Sun, Y. Tao, D. Papadias, and G. Kollios, “Spatio-Temporal Join Selectivity,” Information Systems, vol. 31, no. 8, 2006.
[7] J. Patel, Y. Chen, and V. Chakka, “Stripes: An Efficient Index for Predicted Trajectories,” Proc. ACM SIGMOD, 2004.
[8] C.S. Jensen et al., “Query and Update Efficient $B^{+}$ -Tree Based Indexing of Moving Objects,” Proc. 30th Int'l Conf. Very Large Data Bases (VLDB), 2004.
[9] M. Yiu et al., “The $B^{dual}$ -Tree: Indexing Moving Objects by Space-Filling Curves in the Dual Space,” VLDB J., vol. 17, no. 3, 2008.
[10] S. Saltenis et al., “Indexing the Positions of Continuously Moving Objects,” Proc. ACM SIGMOD, 2000.
[11] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient Processing of Spatial Joins Using R-Trees,” Proc. ACM SIGMOD, 1993.
[12] Y.-W. Huang et al., “Spatial Joins Using R-Trees: Breadth-First Traversal with Global Optimizations,” Proc. 23rd Int'l Conf. Very Large Data Bases (VLDB), 1997.
[13] M. Lee et al., “Transform-Space View: Performing Spatial Join in the Transform Space Using Original-Space Indexes,” IEEE Trans. Knowledge and Data Eng., vol. 18, no. 2, Feb. 2006.
[14] J. Orensten, “Spatial Query Processing in an Object-Oriented Database System,” Proc. ACM SIGMOD, 1986.
[15] D. Hilbert, “Über Die Stetige Abbildung Einer Linie Auf Flächenstück,” Mathematische Annalen, 1891.
[16] E.G. Coffman and P.J. Denning, Operating Systems Theory. Prentice-Hall, 1973.
[17] E.J. O'Neil et al., “The LRU-K Page Replacement Algorithm for Database Disk Buffering,” Proc. ACM SIGMOD, 1993.
[18] Y. Huang, N. Jing, and E. Rundensteiner, “A Cost Model for Estimating the Performance of Spatial Joins Using R-Trees,” Proc. Ninth Int'l Conf. Scientific and Statistical Database Management (SSDBM), 1997.
[19] N. Mamoulis and D. Papadias, “Slot Index Spatial Join,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 1, Jan./Feb. 2003.
[20] Y. Theodoridis, J. Silva, and M. Nascimento, “On the Generation of Spatiotemporal Datasets,” LNCS, vol. 1651, 1999.
[21] D. Pfoser et al., “Novel Approaches to the Indexing of Moving Object Trajectories,” Proc. 26th Int'l Conf. Very Large Data Bases (VLDB), 2000.
[22] A-32 Intel Architecture Optimization Reference Manual. Intel Corporation, 2005.
[23] G. Iwerks, H. Samet, and K. Smith, “Maintenance of Spatial Semijoin Queries on Moving Points,” Proc. 30th Int'l Conf. Very Large Data Bases (VLDB), 2004.
[24] J. Patel and D. DeWitt, “Partition Based Spatial-Merge Join,” Proc. ACM SIGMOD, 1996.
[25] M. Lo and C. Ravishankar, “Spatial Hash-Joins,” Proc. ACM SIGMOD, 1996.
[26] E. Jacox and H. Samet, “Iterative Spatial Join,” ACM Trans. Database Systems, vol. 28, no. 3, 2003.
[27] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles,” Proc. ACM SIGMOD, 1990.
[28] J. Zhang et al., “All-Nearest-Neighbors Queries in Spatial Databases,” Proc. 16th Int'l Conf. Scientific and Statistical Database Management (SSDBM), 2004.

Index Terms:
Spatial databases, temporal databases.
Wook-Shin Han, Jaehwa Kim, Byung Suk Lee, Yufei Tao, Ralf Rantzau, Volker Markl, "Cost-Based Predictive Spatiotemporal Join," IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 2, pp. 220-233, Feb. 2009, doi:10.1109/TKDE.2008.159
Usage of this product signifies your acceptance of the Terms of Use.