
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Evrim Acar, Bülent Yener, "Unsupervised Multiway Data Analysis: A Literature Survey," IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 1, pp. 620, January, 2009.  
BibTex  x  
@article{ 10.1109/TKDE.2008.112, author = {Evrim Acar and Bülent Yener}, title = {Unsupervised Multiway Data Analysis: A Literature Survey}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {21}, number = {1}, issn = {10414347}, year = {2009}, pages = {620}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2008.112}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Unsupervised Multiway Data Analysis: A Literature Survey IS  1 SN  10414347 SP6 EP20 EPD  620 A1  Evrim Acar, A1  Bülent Yener, PY  2009 KW  Introductory and Survey KW  Singular value decomposition KW  Mining methods and algorithms KW  Models VL  21 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] F.L. Hitchcock, “The Expression of a Tensor or a Polyadic as a Sum of Products,” J. Math. and Physics, vol. 6, no. 1, pp. 164189, 1927.
[2] F.L. Hitchcock, “Multiple Invariants and Generalized Rank of a pWay Matrix or Tensor,” J. Math. and Physics, vol. 7, pp. 3979, 1927.
[3] F. Miwakeichi, E. MartínezMontes, P. ValdésSosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi, “Decomposing EEG Data into SpaceTimeFrequency Components Using Parallel Factor Analysis,” NeuroImage, vol. 22, no. 3, pp. 10351045, 2004.
[4] E. Acar, S.A. Camtepe, M. Krishnamoorthy, and B. Yener, “Modeling and Multiway Analysis of Chatroom Tensors,” Proc. IEEE Int'l Conf. Intelligence and Security Informatics (ISI '05), pp.256268, 2005.
[5] F. Estienne, N. Matthijs, D.L. Massart, P. Ricoux, and D. Leibovici, “MultiWay Modelling of HighDimensionality Electroencephalographic Data,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 1, pp. 5972, 2001.
[6] S. Gourvénec, I. Stanimirova, C.A. Saby, C.Y. Airiau, and D.L. Massart, “Monitoring Batch Processes with the STATIS Approach,” J. Chemometrics, vol. 19, no. 57, pp. 288300, 2005.
[7] P.A. Chew, B.W. Bader, T.G. Kolda, and A. Abdelali, “CrossLanguage Information Retrieval Using PARAFAC2,” Proc. 13th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '07), pp. 143152, 2007.
[8] L.R. Tucker, “Implications of Factor Analysis to ThreeWay Matrices of Measurement of Change,” Problems in Measuring Change; pp. 122137, The Univ. of Wisconsin Press, 1963.
[9] L.R. Tucker, “The Extension of Factor Analysis to ThreeDimensional Matrices,” Contributions to Math. Psychology; pp.110182, Holt, Rinehart and Winston, 1964.
[10] B.W. Bader and T.G. Kolda, “Algorithm 862: MATLAB Tensor Classes for Fast Algorithm Prototyping,” ACM Trans. Math. Software, vol. 32, no. 4, pp. 635653, 2006.
[11] H.A.L. Kiers, “Towards a Standardized Notation and Terminology in Multiway Analysis,” J. Chemometrics, vol. 14, no. 3, pp. 105122, 2000.
[12] L. de Lathauwer, B. de Moor, and J. Vandewalle, “A Multilinear Singular Value Decomposition,” SIAM J. Matrix Analysis and Applications, vol. 21, no. 4, pp. 12531278, 2000.
[13] P.M. Kroonenberg and J. de Leeuw, “Principal Component Analysis of ThreeMode Data by Means of Alternating Least Squares Algorithms,” Psychometrika, vol. 45, no. 1, pp. 6997, 1980.
[14] G.H. Golub and C.F. van Loan, Matrix Computations. The Johns Hopkins Univ. Press, 1996.
[15] J.B. Kruskal, “Rank Decomposition, and Uniqueness for 3way and nWay Arrays,” Multiway Data Analysis, pp. 818, Elsevier, 1989.
[16] R. Bro, “PARAFAC. Tutorial and Applications,” Chemometrics and Intelligent Laboratory Systems, vol. 38, no. 2, pp. 149171, 1997.
[17] J. Möcks, “Decomposing EventRelated Potentials: A New Topographic Components Model,” Biological Psychology, vol. 26, nos. 13, pp. 199215, 1988.
[18] R.A. Harshman, “Foundations of the PARAFAC Procedure: Models and Conditions for an ‘Explanatory’ MultiModal Factor Analysis,” UCLA Working Papers in Phonetics, no. 16, pp. 184, 1970.
[19] L.R. Tucker, “Some Mathematical Notes on ThreeMode Factor Analysis,” Psychometrika, vol. 31, pp. 279311, 1966.
[20] C.M. Andersen and R. Bro, “Practical Aspects of PARAFAC Modelling of Fluorescence ExcitationEmission Data,” J. Chemometrics, vol. 17, no. 4, pp. 200215, 2003.
[21] E. Acar, C.A. Bingöl, H. Bingöl, R. Bro, and B. Yener, “Multiway Analysis of Epilepsy Tensors,” Bioinformatics, vol. 23, no. 13, pp.i10i18, 2007.
[22] M. de Vos, A. Vergult, L. de Lathauwer, W. de Clercq, S. van Huffel, P. Dupont, A. Palmini, and W. van Paesschen, “Canonical Decomposition of Ictal Scalp EEG Reliably Detects the Seizure Onset Zone,” NeuroImage, vol. 37, no. 3, pp. 844854, 2007.
[23] J.D. Carroll and J. Chang, “Analysis of Individual Differences in Multidimensional Scaling via an nWay Generalization of “EckartYoung” Decomposition,” Psychometrika, vol. 35, no. 3, pp. 218319, 1970.
[24] R.B. Cattell, “Parallel Proportional Profiles and Other Principles for Determining the Choice of Factors by Rotation,” Psychometrika, vol. 9, no. 4, pp. 267283, 1944.
[25] R. Bro and H.A.L. Kiers, “A New Efficient Method for Determining the Number of Components in PARAFAC Models,” J.Chemometrics, vol. 17, no. 5, pp. 274286, 2003.
[26] R.A. Harshman, “PARAFAC2: Mathematical and Technical Notes,” UCLA Working Papers in Phonetics, vol. 22, pp. 3044, 1972.
[27] R. Bro, C.A. Andersson, and H.A.L. Kiers, “PARAFAC2—Part II: Modeling Chromatographic Data with Retention Time Shifts,” J.Chemometrics, vol. 13, nos. 34, pp. 295309, 1999.
[28] I. Stanimirova, B. Walczak, D.L. Massart, V. Simeonov, C.A. Saby, and E. di Crescenzo, “STATIS, A ThreeWay Method for Data Analysis. Application to Environmental Data,” Chemometrics and Intelligent Laboratory Systems, vol. 73, no. 2, pp. 219233, 2004.
[29] R.A. Harshman, S. Hong, and M.E. Lundy, “Shifted Factor Analysis—Part I: Models and Properties,” J. Chemometrics, vol. 17, no. 7, pp. 363378, 2003.
[30] S. Hong and R.A. Harshman, “Shifted Factor Analysis—Part III: nWay Generalization and Application,” J. Chemometrics, vol. 17, no. 7, pp. 389399, 2003.
[31] M. Mørup and M.N. Schmidt, “Sparse NonNegative Tensor 2DDeconvolution (SNTF2D) for Multichannel TimeFrequency Analysis,” technical report, Technical Univ. of Denmark, DTU, 2006.
[32] R. Bro, R.A. Harshman, and N.D. Sidiropoulos, “Modeling MultiWay Data with Linearly Dependent Loadings,” Technical Report 2005176, KVL, 2005.
[33] A. Kapteyn, H. Neudecker, and T. Wansbeek, “An Approach to nMode Components Analysis,” Psychometrika, vol. 51, no. 2, pp.269275, 1986.
[34] M.E. Timmerman and H.A.L. Kiers, “Three Mode Principal Components Analysis: Choosing the Numbers of Components and Sensitivity to Local Optima,” British J. Math. and Statistical Psychology, vol. 53, no. 1, pp. 116, 2000.
[35] H.A.L. Kiers and A. der Kinderen, “A Fast Method for Choosing the Numbers of Components in Tucker3 Analysis,” British J. Math. and Statistical Psychology, vol. 56, no. 1, pp. 119125, 2003.
[36] E. Ceulemans and H.A.L. Kiers, “Selecting among ThreeMode Principal Component Models of Different Types and Complexities: A Numerical ConvexHull Based Method,” British J. Math. and Statistical Psychology, vol. 59, no. 1, pp. 133150, 2006.
[37] L.H. Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach,” Proc. IEEE Int'l Workshop Computational Advances in MultiSensor Adaptive Processing (CAMSAP '05), pp.129132, 2005.
[38] M.A.O. Vasilescu and D. Terzopoulos, “Multilinear Analysis of Image Ensembles: Tensorfaces,” Proc. Seventh European Conf. Computer Vision (ECCV '02), vol. 2350, pp. 447460, 2002.
[39] M.A.O. Vasilescu and D. Terzopoulos, “Multilinear Image Analysis for Facial Recognition,” Proc. 16th Int'l Conf. Pattern Recognition (ICPR '02), vol. 2, pp. 511514, 2002.
[40] L. de Lathauwer, B. de Moor, and J. Vandewalle, “On the Best Rank1 and ${\rm Rank}\hbox{}(r_{1}, r_{2}, \ldots, r_{N})$ Approximation of HigherOrder Tensors,” SIAM J. Matrix Analysis and Applications, vol. 21, no. 4, pp. 13241342, 2000.
[41] T.G. Kolda, “Orthogonal Tensor Decompositions,” SIAM J. Matrix Analysis and Applications, vol. 23, no. 1, pp. 243255, 2001.
[42] A. Levy and M. Lindenbaum, “Sequential KarhunenLoeve Basis Extraction and Its Applications to Images,” IEEE Trans. Image Processing, vol. 9, no. 8, pp. 13711374, 2000.
[43] T.G. Kolda, “Counterexample to the Possibility of an Extension of the EckartYoung LowRank Approximation Theorem for Orthogonal Rank Tensor Decomposition,” SIAM J. Matrix Analysis and Applications, vol. 24, no. 3, pp. 762767, 2003.
[44] T. Zhang and G.H. Golub, “RankOne Approximation to High Order Tensors,” SIAM J. Matrix Analysis and Applications, vol. 23, no. 2, pp. 534550, 2001.
[45] P. Paatero, “The Multilinear Engine—A TableDriven, Least Squares Program for Solving Multilinear Problems, Including the nWay Parallel Factor Analysis Model,” J. Computational and Graphical Statistics, vol. 8, no. 4, pp. 854888, 1999.
[46] A.K. Smilde, J.A. Westerhuis, and R. Boqué, “Multiway Multiblock Component and Covariates Regression Models,” J. Chemometrics, vol. 14, no. 3, pp. 301331, 2000.
[47] A. Carlier, C. Lavit, M. Pages, M. Pernin, and J. Turlot, “AComparative Review of Methods, Which Handle a Set ofIndexedData Tables,” Multiway Data Analysis, pp.85101, Elsevier, 1989.
[48] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson, “Distributed Clustering Using Collective Principal Component Analysis,” Knowledge and Information Systems J., vol. 3, no. 4, pp.422448, 2001.
[49] A.K. Smilde, R. Bro, and P. Geladi, “MultiWay Analysis,” Applications in the Chemical Sciences, Wiley, 2004.
[50] J.T. Sun, H.J. Zeng, H. Liu, Y. Lu, and Z. Chen, “CubeSVD: A Novel Approach to Personalized Web Search,” Proc. 14th Int'l World Wide Web Conf. (WWW '05), pp. 382390, 2005.
[51] M.A.O. Vasilescu and D. Terzopoulos, “Multilinear Subspace Analysis of Image Ensembles,” Proc. Int'l Conf. Computer Vision and Pattern Recognition (CVPR '03), pp. 9399, 2003.
[52] H. Wang and N. Ahuja, “A Tensor Approximation Approach to Dimensionality Reduction,” Int'l J. Computer Vision, vol. 76, no. 3, pp. 217229, 2008.
[53] P.D. Turney, “Empirical Evaluation of Four Tensor Decomposition Algorithms,” Technical Report ERB1152, Nat'l Research Council, Inst. for Information Tech nology, 2007.
[54] N.M. Faber, R. Bro, and P.K. Hopke, “Recent Developments in CANDECOMP/PARAFAC Algorithms: A Critical Review,” Chemometrics and Intelligent Laboratory Systems, vol. 65, no. 1, pp. 119137, 2003.
[55] J.H. Jiang, H.L. Wu, Y. Li, and R.Q. Yu, “ThreeWay Data Resolution by Alternating SliceWise Diagonalization (ASD) Method,” J. Chemometrics, vol. 14, no. 1, pp. 1536, 2000.
[56] Z.P. Chen, H.L. Wu, J.H. Jiang, Y. Li, and R.Q. Yu, “A Novel Trilinear Decomposition Algorithm for SecondOrder Linear Calibration,” Chemometrics and Intelligent Laboratory Systems, vol. 52, no. 1, pp. 7586, 2000.
[57] G. Tomasi and R. Bro, “A Comparison of Algorithms for Fitting the PARAFAC Model,” Computational Statistics and Data Analysis, vol. 50, no. 7, pp. 17001734, 2006.
[58] P. Paatero, “A Weighted NonNegative Least Squares Algorithm for ThreeWay “PARAFAC” Factor Analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 38, no. 2, pp. 223242, 1997.
[59] G. Tomasi and R. Bro, “PARAFAC and Missing Values,” Chemometrics and Intelligent Laboratory Systems, vol. 75, no. 2, pp.163180, 2005.
[60] T.G. Kolda, B.W. Bader, and J.P. Kenny, “HigherOrder Web Link Analysis Using Multilinear Algebra,” Proc. Fifth IEEE Int'l Conf. Data Mining (ICDM '05), pp. 242249, 2005.
[61] R. Bro and A.K. Smilde, “Centering and Scaling in Component Analysis,” J. Chemometrics, vol. 17, no. 1, pp. 1633, 2003.
[62] R. Bro, “MultiWay Analysis in the Food Industry: Models, Algorithms, and Applications,” PhD dissertation, Univ. of Amsterdam, 1998.
[63] R. Bro, “Review on Multiway Analysis in Chemistry—20002005,” Critical Rev. in Analytical Chemistry, vol. 36, nos. 34, pp. 279293, 2006.
[64] H.W. Cole and W.J. Ray, “EEG Correlates of Emotional Tasks Related to Attentional Demands,” Int'l J. Psychophysiology, vol. 3, no. 1, pp. 3341, 1985.
[65] A.S. Field and D. Graupe, “Topographic Component (Parallel Factor) Analysis of Multichannel Evoked Potentials: Practical Issues in Trilinear Spatiotemporal Decomposition,” Brain Topography, vol. 3, no. 4, pp. 407423, 1991.
[66] M. Mørup, L.K. Hansen, C.S. Hermann, J. Parnas, and S.M. Arnfred, “Parallel Factor Analysis as an Exploratory Tool for Wavelet Transformed EventRelated EEG,” NeuroImage, vol. 29, no. 3, pp. 938947, 2006.
[67] M. Mørup, L.K. Hansen, and S.M. Arnfred, “ERPWAVELAB a Toolbox for MultiChannel Analysis of TimeFrequency Transformed Event Related Potentials,” J. Neuroscience Methods, vol. 161, no. 2, pp. 361368, 2007.
[68] A.H. Andersen and W.S. Rayens, “StructureSeeking Multilinear Methods for the Analysis of fMRI Data,” NeuroImage, vol. 22, no. 2, pp. 728739, 2004.
[69] E. MartinezMontes, P.A. ValdesSosa, F. Miwakeichi, R.I. Goldman, and M.S. Cohen, “Concurrent EEG/fMRI Analysis by Multiway Partial Least Squares,” NeuroImage, vol. 22, no. 3, pp.10231034, 2004.
[70] E. Acar, C.A. Bingöl, H. Bingöl, and B. Yener, “Computational Analysis of Epileptic Focus Localization,” Proc. Fourth IASTED Int'l Conf. Biomedical Eng., pp. 317322, 2006.
[71] E. Acar, S.A. Camtepe, and B. Yener, “Collective Sampling and Analysis of High Order Tensors for Chatroom Communications,” Proc. IEEE Int'l Conf. Intelligence and Security Informatics (ISI '06), pp. 213224, 2006.
[72] B.W. Bader, R.A. Harshman, and T.G. Kolda, “Temporal Analysis of Semantic Graphs Using ASALSAN,” Proc. Seventh IEEE Int'l Conf. Data Mining (ICDM '07), pp. 3342, 2007.
[73] T.G. Kolda and B.W. Bader, “The Tophits Model for HigherOrder Web Link Analysis,” Proc. Workshop Link Analysis, Counterterrorism and Security, 2006.
[74] J. Yang, D. Zhang, A.F. Frangi, and J. Yang, “TwoDimensional PCA: A New Approach to AppearanceBased Face Representation and Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131137, Jan. 2004.
[75] C. Ding and J. Ye, “TwoDimensional Singular Value Decomposition for 2D Maps and Images,” Proc. SIAM Int'l Conf. Data Mining (SDM '05), pp. 3243, 2005.
[76] J. Ye, “Generalized Low Rank Approximation of Matrices,” Machine Learning, vol. 61, nos. 13, pp. 167191, 2005.
[77] H. Wang and N. Ahuja, “Compact Representation of Multidimensional Data Using Tensor RankOne Decomposition,” Proc. 17th Int'l Conf. Pattern Recognition (ICPR '04), vol. 1, pp. 4447, 2004.
[78] X. Meng, A.J. Morris, and E.B. Martin, “OnLine Monitoring of Batch Processes Using a PARAFAC Representation,” J. Chemometrics, vol. 17, no. 1, pp. 6581, 2003.
[79] C.A. Andersson and R. Bro, “The nWay Toolbox for MATLAB,” Chemometrics and Intelligent Laboratory Systems, vol. 52, no. 1, pp. 14, 2000.
[80] B.W. Bader and T.G. Kolda, MATLAB Tensor Toolbox Version 2.2, http://csmr.ca.sandia.gov/~tgkoldaTensorToolbox , 2007.
[81] PLS_Toolbox, Eigenvector Research Inc., http:/www.eigenvector. com/, 2007.
[82] S. Gourvénec, G. Tomasi, C. Durvillec, E. di Crescenzo, C.A. Saby, D.L. Massart, R. Bro, and G. Oppenheim, “CuBatch, A MATLAB Interface for nMode Data Analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 77, nos. 12, pp. 122130, 2005.
[83] B.W. Bader and T.G. Kolda, “Efficient MATLAB Computations with Sparse and Factored Tensors,” SIAM J. Scientific Computing, vol. 30, no. 1, pp. 205231, 2006.
[84] T.G. Kolda and B.W. Bader, “Tensor Decompositions and Applications,” Technical Report SAND20076702, Sandia Nat'l Labs., 2007.
[85] R. Bro, “Multiway Calibration. Multilinear PLS,” J. Chemometrics, vol. 10, no. 1, pp. 4761, 1996.
[86] J. Sun, D. Tao, and C. Faloutsos, “Beyond Streams and Graphs: Dynamic Tensor Analysis,” Proc. 12th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '06), pp. 374383, 2006.
[87] J. ShaweTaylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.
[88] Y. Li, Y. Du, and X. Lin, “KernelBased Multifactor Analysis for Image Synthesis and Recognition,” Proc. Int'l Conf. Computer Vision (ICCV '05), vol. 1, pp. 114119, 2005.
[89] C.A. Andersson and R. Bro, “Improving the Speed of MultiWay Algorithms: Part I. Tucker3,” Chemometrics and Intelligent Laboratory Systems, vol. 42, nos. 12, pp. 93103, 1998.
[90] C.A. Andersson and R. Bro, “Improving the Speed of MultiWay Algorithms: Part II. Compression,” Chemometrics and Intelligent Laboratory Systems, vol. 42, nos. 12, pp. 105113, 1998.
[91] M.W. Mahoney, M. Maggioni, and P. Drineas, “TensorCUR Decompositions for TensorBased Data,” Proc. 12th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '06), pp. 327336, 2006.