
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Yiping Ke, James Cheng, Wilfred Ng, "Efficient Correlation Search from Graph Databases," IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 12, pp. 16011615, December, 2008.  
BibTex  x  
@article{ 10.1109/TKDE.2008.86, author = {Yiping Ke and James Cheng and Wilfred Ng}, title = {Efficient Correlation Search from Graph Databases}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {20}, number = {12}, issn = {10414347}, year = {2008}, pages = {16011615}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2008.86}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Efficient Correlation Search from Graph Databases IS  12 SN  10414347 SP1601 EP1615 EPD  16011615 A1  Yiping Ke, A1  James Cheng, A1  Wilfred Ng, PY  2008 KW  Data mining KW  Mining methods and algorithms VL  20 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] S. Brin, R. Motwani, and C. Silverstein, “Beyond Market Baskets: Generalizing Association Rules to Correlations,” Proc. ACM SIGMOD '97, pp. 265276, 1997.
[2] S. Ma and J.L. Hellerstein, “Mining Mutually Dependent Patterns,” Proc. IEEE Int'l Conf. Data Mining (ICDM '01), pp. 409416, 2001.
[3] E.R. Omiecinski, “Alternative Interest Measures for Mining Associations in Databases,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 1, pp. 5769, Jan./Feb. 2003.
[4] H. Xiong, P.N. Tan, and V. Kumar, “Hyperclique Pattern Discovery,” Proc. ACM SIGMOD Workshop Research Issues in Data Mining and Knowledge Discovery (DMKD '06), vol. 13, no. 2, pp.219242, 2006.
[5] H. Xiong, S. Shekhar, P.N. Tan, and V. Kumar, “TAPER: A TwoStep Approach for AllStrongPairs Correlation Query in Large Databases,” IEEE Trans. Knowledge and Data Eng., vol. 18, no. 4, pp.493508, Apr. 2006.
[6] J. Zhang and J. Feigenbaum, “Finding Highly Correlated Pairs Efficiently with Powerful Pruning,” Proc. Conf. Information and Knowledge Management (CIKM '06), pp. 152161, 2006.
[7] Y. Ke, J. Cheng, and W. Ng, “Mining Quantitative Correlated Patterns Using an InformationTheoretic Approach,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '06), pp. 227236, 2006.
[8] J.Y. Pan, H.J. Yang, C. Faloutsos, and P. Duygulu, “Automatic Multimedia CrossModal Correlation Discovery,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '04), pp. 653658, 2004.
[9] Y. Sakurai, S. Papadimitriou, and C. Faloutsos, “AutoLag: Automatic Discovery of Lag Correlations in Stream Data,” Proc. IEEE Int'l Conf. Data Eng. (ICDE '05), pp. 159160, 2005.
[10] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, and P. Bourne, “The Protein Data Bank,” Nucleic Acids Research, vol. 28, pp. 235242, 2000.
[11] M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids Research, vol. 28, pp. 2730, 2000.
[12] National Library of Medicine, http://chem.sis.nlm.nih.govchemidplus, 2008.
[13] The International Network for Social Network Analysis, http:/www.insna.org/, 2008.
[14] S. Raghavan and H. GarciaMolina, “Representing Web Graphs,” Proc. IEEE Int'l Conf. Data Eng. (ICDE '03), pp. 405416, 2003.
[15] DBLP Dataset, http://dblp.unitrier.dexml/, 2008.
[16] Y. Ke, J. Cheng, and W. Ng, “Correlation Search in Graph Databases,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '07), pp. 390399, 2007.
[17] P.N. Tan, V. Kumar, and J. Srivastava, “Selecting the Right Interestingness Measure for Association Patterns,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '02), pp. 3241, 2002.
[18] L. Holder, D. Cook, and S. Djoko, “Substructure Discovery in the Subdue System,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '94), pp. 169180, 1994.
[19] J.W. Raymond, E.J. Gardiner, and P. Willett, “RASCAL: Calculation of Graph Similarity Using Maximum Common Edge Subgraphs,” Computer J., vol. 45, no. 6, pp. 631644, 2002.
[20] X. Yan, F. Zhu, P.S. Yu, and J. Han, “FeatureBased Similarity Search in Graph Structures,” ACM Trans. Database Systems, vol. 31, no. 4, pp. 14181453, 2006.
[21] H. He and A.K. Singh, “ClosureTree: An Index Structure for Graph Queries,” Proc. IEEE Int'l Conf. Data Eng. (ICDE '06), p. 38, 2006.
[22] D. Williams, J. Huan, and W. Wang, “Graph Database Indexing Using Structured Graph Decomposition,” Proc. IEEE Int'l Conf. Data Eng. (ICDE '07), pp. 976985, 2007.
[23] S.A. Cook, “The Complexity of TheoremProving Procedures,” Proc. Ann. Symp. Theory of Computing (STOC '71), pp. 151158, 1971.
[24] M. Kuramochi and G. Karypis, “Frequent Subgraph Discovery,” Proc. IEEE Int'l Conf. Data Mining (ICDM '01), pp. 313320, 2001.
[25] A. Inokuchi, T. Washio, and H. Motoda, “An A PrioriBased Algorithm for Mining Frequent Substructures from Graph Data,” Proc. European Conf. Principles and Practice of Knowledge Discovery (PKDD '00), pp. 1323, 2000.
[26] X. Yan and J. Han, “Gspan: GraphBased Substructure Pattern Mining,” Proc. IEEE Int'l Conf. Data Mining (ICDM '02), p. 721, 2002.
[27] H. Reynolds, The Analysis of CrossClassifications. The Free Press, 1977.
[28] G.U. Yule, “On the Methods of Measuring Association between Two Attributes,” J. Royal Statistical Soc., vol. 75, no. 6, pp. 579652, 1912.
[29] S. Nijssen and J.N. Kok, “A Quickstart in Frequent Structure Mining Can Make a Difference,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '04), pp. 647652, 2004.
[30] X. Yan, P.S. Yu, and J. Han, “Graph Indexing Based on Discriminative Frequent Structure Analysis,” ACM Trans. Database Systems, vol. 30, no. 4, pp. 960993, 2005.
[31] J. Cheng, Y. Ke, and W. Ng, “FGIndex: Towards VerificationFree Query Processing on Graph Databases,” Proc. ACM SIGMOD '07, pp. 857872, 2007.
[32] G. PiatetskyShapiro, “Discovery, Analysis, and Presentation of Strong Rules,” Knowledge Discovery in Databases, pp. 229248, 1991.