
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Edi Winarko, John F. Roddick, "A SignatureBased Indexing Method for Efficient ContentBased Retrieval of Relative Temporal Patterns," IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 6, pp. 825835, June, 2008.  
BibTex  x  
@article{ 10.1109/TKDE.2008.20, author = {Edi Winarko and John F. Roddick}, title = {A SignatureBased Indexing Method for Efficient ContentBased Retrieval of Relative Temporal Patterns}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {20}, number = {6}, issn = {10414347}, year = {2008}, pages = {825835}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2008.20}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  A SignatureBased Indexing Method for Efficient ContentBased Retrieval of Relative Temporal Patterns IS  6 SN  10414347 SP825 EP835 EPD  825835 A1  Edi Winarko, A1  John F. Roddick, PY  2008 KW  Data Storage Representations KW  Indexing methods KW  Temporal databases VL  20 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] T. Imielinski and A. Virmani, “Association Rules $\ldots$ and What's Next? Towards Second Generation Data Mining Systems,” Proc. Second East European Symp. Advances in Databases and Information Systems (ADBIS '98), pp. 625, 1998.
[2] L. Geng and H.J. Hamilton, “Interestingness Measures for Data Mining: A Survey,” ACM Computing Surveys, vol. 38, no. 3, 2006.
[3] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila, “Pruning and Grouping of Discovered Association Rules,” Proc. ECML Workshop Statistics, Machine Learning, and Knowledge Discovery in Databases, pp. 4752, 1995.
[4] B. Lent, A.N. Swami, and J. Widom, “Clustering Association Rules,” Proc. 13th Int'l Conf. Data Eng. (ICDE '97), W.A. Gray and P.Å. Larson, eds., pp. 220231, 1997.
[5] B. Liu, W. Hsu, and Y. Ma, “Pruning and Summarizing the Discovered Associations,” Proc. ACM SIGKDD '99, pp. 125134, 1999.
[6] B. Liu, M. Hu, and W. Hsu, “MultiLevel Organization and Summarization of the Discovered Rules,” Proc. ACM SIGKDD, 2000.
[7] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. Verkamo, “Finding Interesting Rules from Large Sets of Discovered Association Rules,” Proc. Third Int'l Conf. Information and Knowledge Management (CIKM '94), N. Adam, B. Bhargava, and Y.Yesha, eds., pp. 401407, 1994.
[8] R. Meo, G. Psaila, and S. Ceri, “A New SQLLike Operator for Mining Association Rules,” Proc. 22nd Int'l Conf. Very Large Data Bases (VLDB '96), M.T. Vijayaramam, A. Buchmann, C. Mohan, and L.N. Sarda, eds., pp. 122133, 1996.
[9] J. Han, J.Y. Chiang, S. Chee, J. Chen, Q. Chen, S. Cheng, W. Gong, M. Kamber, K. Koperski, G. Liu, Y. Lu, N. Stefanovic, L. Winstone, B.B. Xia, O.R. Zaiane, S. Zhang, and H. Zhu, “DBMiner: A System for Data Mining in Relational Databases and Data Warehouses,” Proc. ACM SIGKDD, 1996.
[10] A. Netz, S. Chaudhuri, U.M. Fayyad, and J. Bernhardt, “Integrating Data Mining with SQL Databases: OLE DB for Data Mining,” Proc. 17th Int'l Conf. Data Eng. (ICDE'01), pp. 379387, 2001.
[11] T. Imielinski and A. Virmani, “MSQL: A Query Language for Database Mining,” J. Data Mining and Knowledge Discovery, vol. 3, no. 4, pp. 373408, 1999.
[12] A. Tuzhilin and B. Liu, “Querying Multiple Sets of Discovered Rules,” Proc. ACM SIGKDD '02, pp. 5260, 2002.
[13] C.M. Antunes and A.L. Oliveira, “Temporal Data Mining: An Overview,” Proc. ACM SIGKDD Workshop Temporal Data Mining, pp. 113, 2001.
[14] X. Chen and I. Petrounias, “A Framework for Temporal Data Mining,” Proc. Ninth Int'l Conf. Database and Expert Systems Applications (DEXA '98), pp. 796805, 1998.
[15] J.F. Roddick and M. Spiliopoulou, “A Survey of Temporal Knowledge Discovery Paradigms and Methods,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 4, pp. 750767, Mar./Apr. 2002.
[16] F. Höppner, “Learning Temporal Rules from State Sequences,” Proc. IJCAI Workshop Learning from Temporal and Spatial Data, pp.2531, 2001.
[17] E. Winarko and J.F. Roddick, “ARMADA—An Algorithm for Discovering Richer Relative Temporal Association Rules from IntervalBased Data,” Data and Knowledge Eng., vol. 63, no. 1, pp.7690, 2007.
[18] D. Comer, “The Ubiquitous BTree,” Computing Surveys, vol. 11, no. 2, pp. 121137, 1979.
[19] A. Guttman, “RTrees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM SIGMOD '84, pp. 4757, 1984.
[20] S. Helmer and G. Moerkotte, “A Performance Study of Four Index Structures for SetValued Attributes of Low Cardinality,” VLDB J., vol. 12, no. 3, pp. 244261, 2003.
[21] Y. Ishikawa, H. Kitagawa, and N. Ohbo, “Evaluation of Signature Files as Set Access Facilities in OODBs,” Proc. ACM SIGMOD '93, P. Buneman and S. Jajodia, eds., pp. 247256, 1993.
[22] T. Morzy and M. Zakrzewicz, “Group Bitmap Index: A Structure for Association Rules Retrieval,” Proc. ACM SIGKDD '98, R.Agrawal, P. Stolorz, and G. PiatetskyShapiro, eds., pp. 284288, 1998.
[23] U. Deppisch, “STree: A Dynamic Balanced Signature Index for Office Retrieval,” Proc. ACM SIGIR '86, pp. 7787, 1986.
[24] N. Mamoulis, D.W. Cheung, and W. Lian, “Similarity Search in Sets and Categorical Data Using the Signature Tree,” Proc. 19th Int'l Conf. Data Eng. (ICDE '03), U. Dayal, K. Ramamritham, and T.Vijayaraman, eds., pp. 7586, 2003.
[25] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D.W. Cheung, “Mining, Indexing, and Querying Historical Spatiotemporal Data,” Proc. ACM SIGKDD '04, pp. 236245, 2004.
[26] D.L. Lee and C.W. Leng, “A Partitioned Signature File Structure for Multiattribute and Text Retrieval,” Proc. Sixth Int'l Conf. Data Eng. (ICDE '90), pp. 389397, 1990.
[27] F. Rabitti and P. Zezula, “A Dynamic Signature Technique for Multimedia Databases,” Proc. ACM SIGIR '90, J.L. Vidick, ed., pp.193210, 1990.
[28] P. Zezula, F. Rabitti, and P. Tiberio, “Dynamic Partitioning of Signature Files,” ACM Trans. Information Systems, vol. 9, no. 4, pp.336367, 1991.
[29] T. Morzy, M. Wojciechowski, and M. Zakrzewicz, “Optimizing Pattern Queries for Web Access Logs,” Proc. Fifth East European Conf. Advances in Databases and Information Systems (ADBIS '01), pp. 141154, 2001.
[30] A. Nanopoulos, M. Zakrzewicz, T. Morzy, and Y. Manolopoulos, “Efficient Storage and Querying of Sequential Patterns in Database Systems,” Information and Software Technology, vol. 45, pp. 2334, 2003.
[31] M. Zakrzewicz, “Sequential Index Structure for ContentBased Retrieval,” Proc. Fifth PacificAsia Conf. Knowledge Discovery and Data Mining (PAKDD '01), pp. 306311, 2001.
[32] J. Allen, “Maintaining Knowledge about Temporal Intervals,” Comm. ACM, vol. 26, no. 11, pp. 832843, 1983.
[33] J. Xiao, Y. Zhang, X. Jia, and T. Li, “Measuring Similarity of Interests for Clustering WebUsers,” Proc. 12th Australasian Database Conf. (ADC '01), M. Orlowska and J. Roddick, eds., pp.107114, 2001.
[34] C. Faloutsos and S. Christodoulakis, “Signature Files: An Access Method for Documents and Its Analytical Performance Evaluation,” ACM Trans. Office Information Systems, vol. 2, no. 4, pp. 267288, 1984.
[35] Y. Chen, “On the General Signature Trees,” Proc. 16th Int'l Conf. Database and Expert Systems Applications (DEXA '05), pp. 207219, 2005.
[36] H. Kitagawa, Y. Fukushima, Y. Ishikawa, and N. Ohbo, “Estimation of False Drops in SetValued Object Retrieval with Signature Files,” Proc. Fourth Int'l Conf. Foundations of Data Organization and Algorithms (FODO '93), pp. 146163, 1993.
[37] Y. Chen, “Building Signature Trees into OODBs,” J. Information Science and Eng., vol. 20, no. 2, pp. 275304, 2004.
[38] J. Yang and M. Hu, “Trajpattern: Mining Sequential Patterns from Imprecise Trajectories of Mobile Objects,” Proc. 10th Int'l Conf. Extending Database Technology (EDBT '06), pp. 664681, 2006.