
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Deept Kumar, Naren Ramakrishnan, Richard F. Helm, Malcolm Potts, "Algorithms for Storytelling," IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 6, pp. 736751, June, 2008.  
BibTex  x  
@article{ 10.1109/TKDE.2008.32, author = {Deept Kumar and Naren Ramakrishnan and Richard F. Helm and Malcolm Potts}, title = {Algorithms for Storytelling}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {20}, number = {6}, issn = {10414347}, year = {2008}, pages = {736751}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2008.32}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Algorithms for Storytelling IS  6 SN  10414347 SP736 EP751 EPD  736751 A1  Deept Kumar, A1  Naren Ramakrishnan, A1  Richard F. Helm, A1  Malcolm Potts, PY  2008 KW  Data mining KW  Mining methods and algorithms KW  Retrieval models KW  Graph and tree search strategies VL  20 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] L. Parida and N. Ramakrishnan, “Redescription Mining: Structure Theory and Algorithms,” Proc. 20th Nat'l Conf. Artificial Intelligence (AAAI '05), pp. 837844, 2005.
[2] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. Helm, “Turning CARTwheels: An Alternating Algorithm for Mining Redescriptions,” Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '04), pp. 266275, 2004.
[3] M. Zaki and N. Ramakrishnan, “Reasoning About Sets Using Redescription Mining,” Proc. 11th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '05), pp. 364373, 2005.
[4] D. Kumar, N. Ramakrishnan, M. Potts, and R. Helm, “Algorithms for Storytelling,” Proc. 12th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '06), pp. 604610, 2006.
[5] D. Grossman and O. Frieder, Information Retrieval: Algorithms and Heuristics. Springer, 2004.
[6] R. López de Mántaras, “A DistanceBased Attribute Selection Measure for Decision Tree Induction,” Machine Learning, vol. 6, pp. 8192, 1991.
[7] A. Nanopoulos and Y. Manolopoulos, “Efficient Similarity Search for Market Basket Data,” The VLDB J., vol. 11, no. 2, pp. 138152, 2002.
[8] S. Sarawagi and A. Kirpal, “Efficient Set Joins on Similarity Predicates,” Proc. ACM SIGMOD '04, pp. 743754, June 2004.
[9] N. Mamoulis, D. Cheung, and W. Lian, “Similarity Search in Sets and Categorical Data Using the Signature Tree,” Proc. Ninth IEEE Int'l Conf. Data Eng. (ICDE '03), pp. 7586, 2003.
[10] M. Morzy, T. Morzy, A. Nanopoulos, and Y. Manolopoulos, “Hierarchical Bitmap Index: An Efficient and Scalable Indexing Technique for SetValued Data,” Proc. Seventh EastEuropean Conf. Advances in Databases and Information Systems (ADBIS '03), pp. 236252, Sept. 2003.
[11] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing,” Proc. 25th Int'l Conf. Very Large Data Bases (VLDB '99), pp. 518529, Sept. 1999.
[12] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher, “MinWise Independent Permutations,” J. Computer and System Sciences, vol. 60, no. 3, pp. 630659, June 2000.
[13] A. Moore and M. Lee, “Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets,” J. Artificial Intelligence Research, vol. 8, pp. 6791, 1998.
[14] C. Aggarwal, J. Wolf, and P. Yu, “A New Method for Similarity Indexing of Market Basket Data,” Proc. ACM SIGMOD '99, pp.407418, 1999.
[15] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church, “Systematic Determination of Genetic Network Architecture,” Nature Genetics, vol. 22, no. 3, pp. 213215, 1999.
[16] J. Storey and R. Tibshirani, “Statistical Significance for GenomeWide Experiments,” Proc. Nat'l Academy of Sciences, vol. 100, pp.94409445, 2003.
[17] A. Kuchinsky, K. Graham, D. Moh, A. Adler, K. Babaria, and M. Creech, “Biological Storytelling: A Software Tool for Biological Information Organization Based Upon Narrative Structure,” ACM SIGGROUP Bull., vol. 23, no. 2, pp. 45, Aug. 2002.
[18] R. Guha, R. Kumar, D. Sivakumar, and R. Sundaram, “Unweaving a Web of Documents,” Proc. 11th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '05), pp. 574579, 2005.
[19] L. Getoor, “Link Mining: A New Data Mining Challenge,” ACM SIGKDD Explorations Newsletter, vol. 5, no. 1, pp. 8489, 2003.
[20] D. Swanson and N. Smalheiser, “An Interactive System for Finding Complementary Literatures: A Stimulus to Scientific Discovery,” Artificial Intelligence, vol. 91, no. 2, pp. 183203, 1997.
[21] P. Fung and G. Ngai, “One Story, One Flow: Hidden Markov Story Models for Multilingual Multidocument Summarization,” ACM Trans. Speech and Language Processing, vol. 3, no. 2, pp. 116, July 2006.
[22] M. Meila, “Comparing Clusterings by the Variation of Information,” Proc. 16th Ann. Conf. Learning Theory (COLT '03), pp. 173187, 2003.
[23] D. Simovici and S. Jaroszewicz, “An Axiomatization of Partition Entropy,” IEEE Trans. Information Theory, vol. 48, no. 7, pp. 21382142, 2002.