
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Pedro Pereira Rodrigues, João Gama, João Pedro Pedroso, "Hierarchical Clustering of TimeSeries Data Streams," IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 5, pp. 615627, May, 2008.  
BibTex  x  
@article{ 10.1109/TKDE.2007.190727, author = {Pedro Pereira Rodrigues and João Gama and João Pedro Pedroso}, title = {Hierarchical Clustering of TimeSeries Data Streams}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {20}, number = {5}, issn = {10414347}, year = {2008}, pages = {615627}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190727}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Hierarchical Clustering of TimeSeries Data Streams IS  5 SN  10414347 SP615 EP627 EPD  615627 A1  Pedro Pereira Rodrigues, A1  João Gama, A1  João Pedro Pedroso, PY  2008 KW  Data mining KW  Clustering KW  Correlation and regression analysis KW  Industrial control KW  Real time VL  20 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] P. Domingos and G. Hulten, “Mining HighSpeed Data Streams,” Proc. ACM SIGKDD '00, pp. 7180, 2000.
[2] D. Barbará, “Requirements for Clustering Data Streams,” SIGKDD Explorations, vol. 3, no. 2, pp. 2327, Jan. 2002.
[3] E. Keogh and S. Kasetty, “On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration,” Proc. ACM SIGKDD '02, pp. 102111, July 2002.
[4] M. Halkidi, Y. Batistakis, and M. Varzirgiannis, “On Clustering Validation Techniques,” J. Intelligent Information Systems, vol. 17, no. 23, pp. 107145, 2001.
[5] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer Verlag, 2000.
[6] P.P. Rodrigues, J. Gama, and J.P. Pedroso, “ODAC: Hierarchical Clustering of Time Series Data Streams,” Proc. Sixth SIAM Int'l Conf. Data Mining (ICDM '06), pp. 499503, Apr. 2006.
[7] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan, “Clustering Data Streams: Theory and Practice,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 3, pp. 515528, May/June 2003.
[8] F. Ferrer, J. Aguilar, and J. Riquelme, “Incremental Rule Learning and Border Examples Selection from Numerical Data Streams,” J.Universal Computer Science, vol. 11, no. 8, pp. 14261439, 2005.
[9] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice Hall, 1988.
[10] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, 1990.
[11] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, “A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proc. ACM SIGKDD '96, pp. 226231, 1996.
[12] W. Wang, J. Yang, and R.R. Muntz, “STING: A Statistical Information Grid Approach to Spatial Data Mining,” Proc. 23rd Int'l Conf. Very Large Data Bases (VLDB '97), pp. 186195, 1997.
[13] D.H. Fisher, “Knowledge Acquisition via Incremental Conceptual Clustering,” Machine Learning, vol. 2, no. 2, pp. 139172, 1987.
[14] P. Bradley, U. Fayyad, and C. Reina, “Scaling Clustering Algorithms to Large Databases,” Proc. ACM SIGKDD '98, pp. 915, 1998.
[15] L. O'Callaghan, A. Meyerson, R. Motwani, N. Mishra, and S. Guha, “StreamingData Algorithms for HighQuality Clustering,” Proc. 18th IEEE Int'l Conf. Data Eng. (ICDE '02), pp. 685696, 2002.
[16] G. Cormode, S. Muthukrishnan, and W. Zhuang, “Conquering the Divide: Continuous Clustering of Distributed Data Streams,” Proc. 23nd IEEE Int'l Conf. Data Eng. (ICDE '07), pp. 10361045, 2007.
[17] T.F. Gonzalez, “Clustering to Minimize the Maximum InterCluster Distance,” Theoretical Computer Science, vol. 38, nos. 23, pp.293306, 1985.
[18] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proc. ACM SIGMOD '96, pp. 103114, 1996.
[19] C. Aggarwal, J. Han, J. Wang, and P. Yu, “A Framework for Clustering Evolving Data Streams,” Proc. 29th Int'l Conf. Very Large Data Bases (VLDB '03), pp. 8192, Sept. 2003.
[20] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering Algorithm for Large Databases,” Proc. ACM SIGMOD '98, pp. 7384, 1998.
[21] J. Gama, P. Medas, and P. Rodrigues, “Learning Decision Trees from Dynamic Data Streams,” Proc. 20th ACM Symp. Applied Computing (SAC '05), pp. 573577, Mar. 2005.
[22] G. Hulten, L. Spencer, and P. Domingos, “Mining TimeChanging Data Streams,” Proc. ACM SIGKDD '01, pp. 97106, 2001.
[23] W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables,” J. Am. Statistical Assoc., vol. 58, no. 301, pp.1330, 1963.
[24] K. Pearson, “Regression, Heredity and Panmixia,” Philosophical Trans. Royal Soc., vol. 187, pp. 253318, 1896.
[25] L. Leydesdorff, “Similarity Measures, Author Cocitation Analysis, and Information Theory,” J. Am. Soc. Information Science and Technology, vol. 56, no. 7, pp. 769772, 2005.
[26] M. Wang and X.S. Wang, “Efficient Evaluation of Composite Correlations for Streaming Time Series,” Proc. Fourth Int'l Conf. WebAge Information Management (WAIM '03), pp. 369380, 2003.
[27] E. Fowlkes and C. Mallows, “A Method for Comparing Two Hierarchical Clusterings,” J. Am. Statistical Assoc., vol. 78, no. 383, pp. 553569, 1983.
[28] L. Hubert and J. Schultz, “Quadratic Assignment as a General DataAnalysis Strategy,” British J. Math. and Statistical Psychology, vol. 29, pp. 190241, 1975.
[29] J. Dunn, “WellSeparated Clusters and Optimal Fuzzy Partitions,” J. Cybernetics, vol. 4, no. 1, pp. 95104, 1974.
[30] “R: A Language and Environment for Statistical Computing,” RFoundation for Statistical Computing. R Development Core Team, http:/www.Rproject.org, 2005.
[31] L.A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp.338353, 1965.
[32] A. Bagnall and G. Janacek, “Clustering Time Series with Clipped Data,” Machine Learning, vol. 58, no. 23, pp. 151178, 2005.