
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Alexandre Termier, MarieChristine Rousset, Michèle Sebag, Kouzou Ohara, Takashi Washio, Hiroshi Motoda, "DryadeParent, An Efficient and Robust Closed Attribute Tree Mining Algorithm," IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 3, pp. 300320, March, 2008.  
BibTex  x  
@article{ 10.1109/TKDE.2007.190695, author = {Alexandre Termier and MarieChristine Rousset and Michèle Sebag and Kouzou Ohara and Takashi Washio and Hiroshi Motoda}, title = {DryadeParent, An Efficient and Robust Closed Attribute Tree Mining Algorithm}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {20}, number = {3}, issn = {10414347}, year = {2008}, pages = {300320}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190695}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  DryadeParent, An Efficient and Robust Closed Attribute Tree Mining Algorithm IS  3 SN  10414347 SP300 EP320 EPD  300320 A1  Alexandre Termier, A1  MarieChristine Rousset, A1  Michèle Sebag, A1  Kouzou Ohara, A1  Takashi Washio, A1  Hiroshi Motoda, PY  2008 KW  Data mining KW  Mining methods and algorithms KW  Mining tree structured data VL  20 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 11th Int'l Conf. Data Eng. (ICDE '95), P.S. Yu and A.S.P. Chen, eds., pp. 314, , 1995.
[2] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovery of Frequent Episodes in Event Sequences,” Data Mining and Knowledge Discovery, vol. 1, no. 3, pp. 259289, citeseer.ist.psu.edu/agrawal95mining.htmlciteseer.ist.psu.edu mannila97discovery.html , 1997.
[3] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa, “Efficient Substructure Discovery from Large SemiStructured Data,” Proc. Second SIAM Int'l Conf. Data Mining (SDM '02), pp. 158174, Apr. 2002.
[4] A. Inokuchi, T. Washio, and H. Motoda, “Complete Mining of Frequent Patterns from Graphs: Mining Graph Data,” Machine Learning, vol. 50, no. 3, pp. 321354, 2003.
[5] M. Kuramochi and G. Karypis, “An Efficient Algorithm for Discovering Frequent Subgraphs,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 9, pp. 10381051, Sept. 2004.
[6] J.H. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla, “Aggregated Multicast—A Comparative Study,” Proc. Second Int'l IFIPTC6 Networking Conf. (NETWORKING '02): Networking Technologies, Services, and Protocols; Performance of Computer and Comm. Networks; and Mobile and Wireless Comm., pp. 10321044, 2002.
[7] D. Shasha, J.T.L. Wang, and S. Zhang, “Unordered Tree Mining with Applications to Phylogeny,” Proc. 20th Int'l Conf. Data Eng. (ICDE '04), p. 708, 2004.
[8] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest: Algorithms and Applications,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 8, pp. 10211035, Aug. 2005.
[9] L.H. Yang, M.L. Lee, W. Hsu, and S. Acharya, “Mining Frequent Query Patterns from XML Queries,” Proc. Eighth Int'l Conf. Database Systems for Advanced Applications (DASFAA '03), p. 355, 2003.
[10] M.J. Zaki and C.C. Aggarwal, “XRules: An Effective Structural Classifier for XML Data,” Proc. ACM SIGKDD '03, citeseer.ist. psu.eduzaki03xrules.html, 2003.
[11] A. Termier, M. Rousset, and M. Sebag, “Dryade: A New Approach for Discovering Closed Frequent Trees in Heterogeneous Tree Databases,” Proc. Fourth IEEE Int'l Conf. Data Mining (ICDM '04), pp. 543546, 2004.
[12] H. Arimura and T. Uno, “An OutputPolynomial Time Algorithm for Mining Frequent Closed Attribute Trees,” Proc. 15th Int'l Conf. Inductive Logic Programming (ILP '05), 2005.
[13] Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz, “CMTreeMiner: Mining Both Closed and Maximal Frequent Subtrees,” Proc. Eighth PacificAsia Conf. Knowledge Discovery and Data Mining (PAKDD '04), 2004.
[14] P. Kilpeläinen, “Tree Matching Problems with Applications to Structured Text Databases,” PhD dissertation, Technical Report A19926, Dept. of Computer Science, Univ. of Helsinki, Nov. 1992.
[15] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering Frequent Closed Itemsets for Association Rules,” Proc. Seventh Int'l Conf. Database Theory (ICDT '99), 1999.
[16] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th Int'l Conf. Very Large Data Bases (VLDB '94), 1994.
[17] M.J. Zaki and C.J. Hsiao, “Charm: An Efficient Algorithm for Closed Itemset Mining,” Proc. Second SIAM Int'l Conf. Data Mining (SDM '02), Apr. 2002.
[18] T. Uno, M. Kiyomi, and H. Arimura, “LCM v.2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets,” Proc. Second Workshop Frequent Itemset Mining Implementations (FIMI '04), 2004.
[19] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest,” Proc. Eighth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '02), July 2002.
[20] T. Asai, H. Arimura, T. Uno, and S. Nakano, “Discovering Frequent Substructures in Large Unordered Trees,” Proc. Sixth Int'l Conf. Discovery Science (DS '03), pp. 4761, 2003.
[21] S. Nijssen and J.N. Kok, “Efficient Discovery of Frequent Unordered Trees,” Proc. First Int'l Workshop Mining Graphs, Trees and Sequences (MGTS '03), 2003.
[22] Y. Xiao, J.F. Yao, Z. Li, and M.H. Dunham, “Efficient Data Mining for Maximal Frequent Subtrees,” Proc. Third IEEE Int'l Conf. Data Mining (ICDM '03), p. 379, 2003.
[23] M.J. Zaki, “Efficiently Mining Frequent Embedded Unordered Trees,” Fundamenta Informaticae, special issue on advances in mining graphs, trees and sequences, vol. 65, nos. 12, pp. 3352, Mar./Apr. 2005.
[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Dynamic Programming,” Introduction to Algorithms, second ed., pp. 323369, MIT Press, 2001.
[25] R. Chalmers and K. Almeroth, “Modeling the Branching Characteristics and Efficiency Gains of Global Multicast Trees,” Proc. IEEE INFOCOM '01, Apr. 2001.
[26] L. Denoyer, “XML Mining Challenge,” http://xmlmining.lip6.frCorpus, 2006.
[27] W. Consortium, Extensible Markup Language (XML) 1.0, fourth ed., http://www.w3.org/TRRECxml/, 2006.
[28] E. Gold, “Language Identification in the Limit,” Information and Control, vol. 10, pp. 447474, 1967.
[29] Y. Papakonstantinou and V. Vianu, “DTD Inference for Views of XML Data,” Proc. ACM SIGMOD, 2000.
[30] I.C. Jarvie, “America's Sociological Movies,” Arts in Soc., vol. 10, no. 2, pp. 171181, SummerFall 1973.