
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Deng Cai, Xiaofei He, Jiawei Han, "SRDA: An Efficient Algorithm for LargeScale Discriminant Analysis," IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 1, pp. 112, January, 2008.  
BibTex  x  
@article{ 10.1109/TKDE.2007.190669, author = {Deng Cai and Xiaofei He and Jiawei Han}, title = {SRDA: An Efficient Algorithm for LargeScale Discriminant Analysis}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {20}, number = {1}, issn = {10414347}, year = {2008}, pages = {112}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190669}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  SRDA: An Efficient Algorithm for LargeScale Discriminant Analysis IS  1 SN  10414347 SP1 EP12 EPD  112 A1  Deng Cai, A1  Xiaofei He, A1  Jiawei Han, PY  2008 KW  Data mining KW  Feature evaluation and selection VL  20 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] P.N. Belhumeur, J.P. Hepanha, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711720, July 1997.
[2] D. Cai, X. He, and J. Han, “Efficient Kernel Discriminant Analysis via Spectral Regression,” Proc. Int'l Conf. Data Mining (ICDM '07), 2007.
[3] D. Cai, X. He, and J. Han, “Spectral Regression: A Unified Approach for Sparse Subspace Learning,” Proc. Int'l Conf. Data Mining (ICDM '07), 2007.
[4] D. Cai, X. He, and J. Han, “Spectral Regression: A Unified Subspace Learning Framework for ContentBased Image Retrieval,” Proc. ACM Conf. Multimedia, 2007.
[5] D. Cai, X. He, and J. Han, “Spectral Regression for Efficient Regularized Subspace Learning,” Proc. 11th Int'l Conf. Computer Vision (ICCV '07), 2007.
[6] D. Cai, X. He, W.V. Zhang, and J. Han, “Regularized Locality Preserving Indexing via Spectral Regression,” Proc. 16th ACM Int'l Conf. Information and Knowledge Management (CIKM '07), 2007.
[7] F.R.K. Chung, “Spectral Graph Theory,” CBMS Regional Conf. Series in Math., vol. 92, 1997.
[8] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second ed. WileyInterscience, 2000.
[9] J.H. Friedman, “Regularized Discriminant Analysis,” J. Am. Statistical Assoc., vol. 84, no. 405, pp. 165175, 1989.
[10] K. Fukunaga, Introduction to Statistical Pattern Recognition, second ed. Academic Press, 1990.
[11] V. Gaede and O. Günther, “Multidimensional Access Methods,” ACM Computing Surveys, vol. 30, no. 2, pp. 170231, 1998.
[12] G.H. Golub and C.F.V. Loan, Matrix Computations, third ed. Johns Hopkins Univ. Press, 1996.
[13] T. Hastie, A. Buja, and R. Tibshirani, “Penalized Discriminant Analysis,” Annals of Statistics, vol. 23, pp. 73102, 1995.
[14] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
[15] X. He, S. Yan, Y. Hu, P. Niyogi, and H.J. Zhang, “Face Recognition Using Laplacianfaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328340, Mar. 2005.
[16] P. Howland and H. Park, “Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp.9951006, Aug. 2004.
[17] K. Lang, “Newsweeder: Learning to Filter Netnews,” Proc. 12th Int'l Conf. Machine Learning (ICML '95), pp. 331339, 1995.
[18] C.C. Paige and M.A. Saunders, “Algorithm 583 LSQR: Sparse Linear Equations and Least Squares Problems,” ACM Trans. Math. Software, vol. 8, no. 2, pp. 195209, June 1982.
[19] C.C. Paige and M.A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Trans. Math. Software, vol. 8, no. 1, pp. 4371, Mar. 1982.
[20] R. Penrose, “A Generalized Inverse for Matrices,” Proc. Cambridge Philosophical Soc., vol. 51, pp. 406413, 1955.
[21] G.W. Stewart, “Basic Decompositions,” Matrix Algorithms, vol. 1, SIAM, 1998.
[22] G.W. Stewart, “Eigensystems,” Matrix Algorithms, vol. 2, SIAM, 2001.
[23] D.L. Swets and J. Weng, “Using Discriminant Eigenfeatures for Image Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 831836, Aug. 1996.
[24] K. Torkkola, “Linear Discriminant Analysis in Document Classification,” Proc. IEEE Int'l Conf. Data Mining Workshop Text Mining, 2001.
[25] J. Ye, “Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems,” J. Machine Learning Research, vol. 6, pp. 483502, 2005.
[26] J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar, “IDR/QR: An Incremental Dimension Reduction Algorithm via QR Decomposition,” Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '04), pp. 364373, 2004.
[27] J. Ye and T. Wang, “Regularized Discriminant Analysis for High Dimensional, Low Sample Size Data,” Proc. 12th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '06), pp. 454463, 2006.
[28] J. Ye, “Least Squares Linear Discriminant Analysis,” Proc. 24th Int'l Conf. Machine Learning (ICML '07), 2007.