
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Eugenio Cesario, Giuseppe Manco, Riccardo Ortale, "TopDown ParameterFree Clustering of HighDimensional Categorical Data," IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 12, pp. 16071624, December, 2007.  
BibTex  x  
@article{ 10.1109/TKDE.2007.190649, author = {Eugenio Cesario and Giuseppe Manco and Riccardo Ortale}, title = {TopDown ParameterFree Clustering of HighDimensional Categorical Data}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {19}, number = {12}, issn = {10414347}, year = {2007}, pages = {16071624}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190649}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  TopDown ParameterFree Clustering of HighDimensional Categorical Data IS  12 SN  10414347 SP1607 EP1624 EPD  16071624 A1  Eugenio Cesario, A1  Giuseppe Manco, A1  Riccardo Ortale, PY  2007 KW  Clustering KW  Database Applications  Clustering KW  Information Search and Retrieval  Clustering VL  19 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '98), pp. 94105, 1998.
[2] P. Andritsos, P. Tsaparas, R. Miller, and K. Sevcik, “LIMBO: Scalable Clustering of Categorical Data,” Proc. Ninth Int'l Conf. Extending Database Technology (EDBT '04), pp. 123146, 2004.
[3] D. Barbará, J. Couto, and Y. Li, “COOLCAT: An EntropyBased Algorithm for Categorical Clustering,” Proc. 11th ACM Conf. Information and Knowledge Management (CIKM '02), pp. 582589, 2002.
[4] J. Basak and R. Krishnapuram, “Interpretable Hierarchical Clustering by Constructing an Unsupervised Decision Tree,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 1, Jan. 2005.
[5] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent Dirichlet Allocation,” J. Machine Learning Research, vol. 3, pp. 9931022, 2003.
[6] H. Blockeel, L.D. Raedt, and J. Ramon, “TopDown Induction of Clustering Trees,” Proc. 15th Int'l Conf. Machine Learning (ICML '98), pp. 5563, 1998.
[7] I. Cadez, P. Smyth, and H. Mannila, “Probabilistic Modeling of Transaction Data with Applications to Profiling, Visualization, and Prediction,” Proc. Seventh ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '01), pp. 3746, 2001.
[8] M. CarreiraPerpinan and S. Renals, “Practical Identifiability of Finite Mixture of Multivariate Distributions,” Neural Computation, vol. 12, no. 1, pp. 141152, 2000.
[9] S. Deerwester et al., “Indexing by Latent Semantic Analysis,” J.Am. Soc. Information Science, vol. 41, no. 6, 1990.
[10] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, “A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proc. Eighth ACM Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '96), pp. 226231, 1996.
[11] D. Fisher, “Knowledge Acquisition via Incremental Conceptual Clustering,” Machine Learning, vol. 2, pp. 139172, 1987.
[12] C. Fraley and A. Raftery, “How Many Clusters? Which Clustering Method? The Answer via ModelBased Cluster Analysis,” The Computer J., vol. 41, no. 8, 1998.
[13] G. Gan and J. Wu, “Subspace Clustering for High Dimensional Categorical Data,” SIGKDD Explorations, vol. 6, no. 2, pp. 8794, 2004.
[14] V. Ganti, J. Gehrke, and R. Ramakrishnan, “CACTUS: Clustering Categorical Data Using Summaries,” Proc. Fifth ACM Conf. Knowledge Discovery and Data Mining (KDD '99), pp. 7383, 1999.
[15] A. Gersho and R. Gray, Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1991.
[16] D. Gibson, J. Kleinberg, and P. Raghavan, “Clustering Categorical Data: An Approach Based on Dynamical Systems,” VLDB J., vol. 8, pp. 222236, 2000.
[17] A. Gordon, Classification. Chapman and Hall/CRC Press, 1999.
[18] C. Gozzi, F. Giannotti, and G. Manco, “Clustering Transactional Data,” Proc. Sixth European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD '02), pp. 175187, 2002.
[19] J. Grabmeier and A. Rudolph, “Techniques of Cluster Algorithms in Data Mining,” Data Mining and Knowledge Discovery, vol. 6, no. 4, pp. 303360, 2002.
[20] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering Algorithm for Large Databases,” Proc. ACM SIGMOD Conf. Management of Data (SIGMOD '98), pp. 7384, 1998.
[21] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering Algorithm for Categorical Attributes,” Information Systems, vol. 25, no. 5, pp. 345366, 2001.
[22] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Cluster Validity Methods,” SIGMOD Record, vol. 31, nos. 12, 2002.
[23] E. Han, G. Karypis, V. Kumar, and B. Mobasher, “Clustering in a High Dimensional Space Using Hypergraph Models,” Proc. ACM SIGMOD Workshops Research Issues on Data Mining and Knowledge Discovery (DMKD '97), 1997.
[24] Z. Huang, “Extensions to the KMeans Algorithm for Clustering Large Data Sets with Categorical Values,” Data Mining and Knowledge Discovery, vol. 2, no. 3, pp. 283304, 1998.
[25] A. Jain and R. Dubes, Algorithms for Clustering Data. Prentice Hall, 1988.
[26] E. Keogh, S. Lonardi, and C. Ratanamahatana, “Towards ParameterFree Data Mining,” Proc. 10th ACM Conf. Knowledge Discovery and Data Mining (KDD '04), pp. 206215, 2004.
[27] B. Liu, Y. Xia, and P. Yu, “Clustering through Decision Tree Construction,” Proc. Ninth Int'l Conf. Information and Knowledge Management (CIKM '00), pp. 2029, 2000.
[28] A. McCallum, K. Nigam, and L.H. Ungar, “Efficient Clustering of HighDimensional Data Sets with Application to Reference Matching,” Proc. Sixth Int'l Conf. Knowledge Discovery and Data Mining (KDD '00), pp. 169178, 2000.
[29] G. McLachlan and D. Peel, Finite Mixture Models. John Wiley & Sons, 2000.
[30] M. Meila and D. Heckerman, “An Experimental Comparison of ModelBased Clustering Methods,” Machine Learning, vol. 42, no. 1/2, pp. 929, 2001.
[31] R. Ng and J. Han, “CLARANS: A Method for Clustering Objects for Spatial Data Mining,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 5, pp. 10031016, Sept./Oct. 2002.
[32] M. Ozdal and C. Aykanat, “Hypergraph Models and Algorithms for DataPatternBased Clustering,” Data Mining and Knowledge Discovery, vol. 9, pp. 2957, 2004.
[33] L. Parsons, E. Haque, and H. Liu, “Subspace Clustering for HighDimensional Data: A Review,” SIGKDD Explorations, vol. 6, no. 1, pp. 90105, 2004.
[34] D. Pelleg and A. Moore, “XMeans: Extending KMeans with Efficient Estimation of the Number of Clusters,” Proc. 17th Int'l Conf. Machine Learning (ICML '00), pp. 727734, 2000.
[35] J.G.S. Zhong, “Generative ModelBased Document Clustering: A Comparative Study,” Knowledge and Information Systems, vol. 8, no. 3, pp. 374384, 2005.
[36] P. Smyth, “Model Selection for Probabilistic Clustering Using CrossValidated Likelihood,” Statistics and Computing, vol. 10, no. 1, pp. 6372, 2000.
[37] M. Sultan et al., “Binary TreeStructured Vector Quantization Approach to Clustering and Visualizing Microarray Data,” Bioinformatics, vol. 18, 2002.
[38] M.O.T. Li and S. Ma, “EntropyBased Criterion in Categorical Clustering,” Proc. 21st Int'l Conf. Machine Learning (ICML '04), pp.6875, 2004.
[39] K. Wang, C. Xu, and B. Liu, “Clustering Transactions Using Large Items,” Proc. Eighth Int'l Conf. Information and Knowledge Management (CIKM '99), pp. 483490, 1999.
[40] Y. Yang, X. Guan, and J. You, “CLOPE: A Fast and Effective Clustering Algorithm for Transactional Data,” Proc. Eighth ACM Conf. Knowledge Discovery and Data Mining (KDD '02), pp. 682687, 2002.
[41] M. Zaki and M. Peters, “CLICK: Mining Subspace Clusters in categorical Data via $k$ Partite Maximal Cliques,” Proc. 21st Int'l Conf. Data Eng. (ICDE '05), 2005.
[42] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proc. ACM SIGMOD Conf. Management of Data (SIGMOD '96), pp. 103114, 1996.