The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (2007 vol.19)
pp: 1333-1348
ABSTRACT
Many complex systems in the real world can be modeled as signed social networks that contain both positive and negative relations. Algorithms for mining social networks have been developed in the past, however most of them were designed primarily for networks containing only positive relations and thus not suitable for signed networks. In this work, we propose a new algorithm, called FEC, to mine signed social networks so that both positive within-group relations and negative between-group relations are dense. FEC considers both the sign and the density of relations as the clustering attributes, making itself effective for not only signed networks but also conventional social networks including only positive relations. Also, FEC adopts an agent-based heuristic that makes the algorithm efficient (in linear time with respect to the size of a network) and capable of giving nearly optimal solutions. FEC depends on only one parameter whose value can easily be set, and requires no prior knowledge on hidden community structures. The effectiveness and efficacy of FEC have been demonstrated through a set of rigorous experiments involving both benchmark and randomly-generated signed networks.
INDEX TERMS
community mining; agent-based approach; random walk; signed social networks
CITATION
Bo Yang, William Cheung, Jiming Liu, "Community Mining from Signed Social Networks", IEEE Transactions on Knowledge & Data Engineering, vol.19, no. 10, pp. 1333-1348, October 2007, doi:10.1109/TKDE.2007.1061
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool