The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.09 - September (2007 vol.19)
pp: 1161-1174
ABSTRACT
This paper considers the problem of efficiently maintaining a clustering of a dynamic set of data points that move continuously in two-dimensional Euclidean space. This problem has received little attention and introduces new challenges to clustering. The paper proposes a new scheme that is capable of incrementally clustering moving objects. This proposal employs a notion of object dissimilarity that considers object movement across a period of time, and it employs clustering features that can be maintained efficiently in incremental fashion. In the proposed scheme, a quality measure for incremental clusters is used for identifying clusters that are not compact enough after certain insertions and deletions. An extensive experimental study shows that the new scheme performs significantly faster than traditional ones that frequently rebuild clusters. The study also shows that the new scheme is effective in preserving the quality of moving-object clusters.
INDEX TERMS
Spatial databases, Temporal databases, Clustering
CITATION
Christian S. Jensen, Dan Lin, Beng Chin Ooi, "Continuous Clustering of Moving Objects", IEEE Transactions on Knowledge & Data Engineering, vol.19, no. 9, pp. 1161-1174, September 2007, doi:10.1109/TKDE.2007.1054
30 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool