This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Continuous Clustering of Moving Objects
September 2007 (vol. 19 no. 9)
pp. 1161-1174
This paper considers the problem of efficiently maintaining a clustering of a dynamic set of data points that move continuously in two-dimensional Euclidean space. This problem has received little attention and introduces new challenges to clustering. The paper proposes a new scheme that is capable of incrementally clustering moving objects. This proposal employs a notion of object dissimilarity that considers object movement across a period of time, and it employs clustering features that can be maintained efficiently in incremental fashion. In the proposed scheme, a quality measure for incremental clusters is used for identifying clusters that are not compact enough after certain insertions and deletions. An extensive experimental study shows that the new scheme performs significantly faster than traditional ones that frequently rebuild clusters. The study also shows that the new scheme is effective in preserving the quality of moving-object clusters.

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Application,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '98), pp. 94-105, 1998.
[2] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander, “OPTICS: Ordering Points to Identify the Clustering Structure,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '99), pp. 49-60, 1999.
[3] Applied Generics, RoDIN24, www.appliedgenerics.com/down loadsRoDIN24-Brochure.pdf , 2006.
[4] J. Basch, L.J. Guibas, and J. Hershberger, “Data Structures for Mobile Data,” Algorithms, vol. 31, no. 1, pp. 1-28, 1999.
[5] C.S. Jensen, D. Tiesyte, and N. Tradisauskas, “The COST Benchmark-Comparison and Evaluation of Spatio-Temporal Indexes,” Proc. 11th Int'l Conf. Database Systems for Advanced Applications (DASFAA '06), pp. 125-140, 2006.
[6] T.F. Gonzalez, “Clustering to Minimize the Maximum Intercluster Distance,” Theoretical Computer Science, vol. 38, pp. 293-306, 1985.
[7] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering Algorithm for Large Databases,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '98), pp. 73-84, 1998.
[8] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V.J. Tsotras, “On-Line Discovery of Dense Areas in Spatio-Temporal Databases,” Proc. Eighth Int'l Symp. Spatial and Temporal Databases (SSTD '03), pp. 306-324, 2003.
[9] S. Har-Peled, “Clustering Motion,” Discrete and Computational Geometry, vol. 31, no. 4, pp. 545-565, 2003.
[10] V.S. Iyengar, “On Detecting Space-Time Clusters,” Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '04), pp. 587-592, 2004.
[11] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.
[12] C.S. Jensen, D. Lin, and B.C. Ooi, “Query and Update Efficient ${\rm B}^{+}{\hbox{-}}{\rm{Tree}}$ Based Indexing of Moving Objects,” Proc. 30th Int'l Conf. Very Large Data Bases (VLDB '04), pp. 768-779, 2004.
[13] P. Kalnis, N. Mamoulis, and S. Bakiras, “On Discovering Moving Clusters in Spatio-Temporal Data,” Proc. Ninth Int'l Symp. Spatial and Temporal Databases (SSTD '05), pp. 364-381, 2005.
[14] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical Clustering Algorithm Using Dynamic Modeling,” Computer, vol. 32, no. 8, pp. 68-75, Aug. 1999.
[15] D. Kwon, S. Lee, and S. Lee, “Indexing the Current Positions of Moving Objects Using the Lazy Update R-Tree,” Proc. Third Int'l Conf. Mobile Data Management (MDM '02), pp. 113-120, 2002.
[16] Y. Li, J. Han, and J. Yang, “Clustering Moving Objects,” Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '04), pp. 617-622, 2004.
[17] J. Macqueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. Fifth Berkeley Symp. Math. Statistics and Probability, pp. 281-297, 1967.
[18] S. Nassar, J. Sander, and C. Cheng, “Incremental and Effective Data Summarization for Dynamic Hierarchical Clustering,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '04), pp.467-478, 2004.
[19] R. Ng and J. Han, “Efficient and Effective Clustering Method for Spatial Data Mining,” Proc. 20th Int'l Conf. Very Large Data Bases (VLDB '94), pp. 144-155, 1994.
[20] J.M. Patel, Y. Chen, and V.P. Chakka, “STRIPES: An Efficient Index for Predicted Trajectories,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '04), pp. 637-646, 2004.
[21] S. Šaltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez, “Indexing the Positions of Continuously Moving Objects,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '00), pp.331-342, 2000.
[22] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult, “MONIC: Modeling and Monitoring Cluster Transitions,” Proc. 12th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '06), pp. 706-711, 2006.
[23] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu, “Prediction and Indexing of Moving Objects with Unknown Motion Patterns,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '04), pp. 611-622, 2004.
[24] Y. Tao, D. Papadias, and J. Sun, “The ${\rm TPR}^{\ast}{\hbox{-}}{\rm{Tree}}$ : An Optimized Spatio-Temporal Access Method for Predictive Queries,” Proc. 29th Int'l Conf. Very Large Data Bases (VLDB '03), pp. 790-801, 2003.
[25] W. Wang, J. Yang, and R. Muntz, “Sting: A Statistical Information Grid Approach to Spatial Data Mining,” Proc. 23rd Int'l Conf. Very Large Data Bases (VLDB '97), pp. 186-195, 1997.
[26] M.L. Yiu and N. Mamoulis, “Clustering Objects on a Spatial Network,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '04), pp. 443-454, 2004.
[27] Q. Zhang and X. Lin, “Clustering Moving Objects for Spatio-Temporal Selectivity Estimation,” Proc. 15th Australasian Database Conf. (ADC '04), pp. 123-130, 2004.
[28] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '96), pp. 103-114, 1996.

Index Terms:
Spatial databases, Temporal databases, Clustering
Citation:
Christian S. Jensen, Dan Lin, Beng Chin Ooi, "Continuous Clustering of Moving Objects," IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 9, pp. 1161-1174, Sept. 2007, doi:10.1109/TKDE.2007.1054
Usage of this product signifies your acceptance of the Terms of Use.