This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Frequent Closed Sequence Mining without Candidate Maintenance
August 2007 (vol. 19 no. 8)
pp. 1042-1056
Previous studies have presented convincing arguments that a frequent pattern mining algorithm should not mine all frequent patterns but only the closed ones because the latter leads to not only a more compact yet complete result set but also better efficiency. However, most of the previously developed closed pattern mining algorithms work under the candidate maintenance-and-test paradigm, which is inherently costly in both runtime and space usage when the support threshold is low or the patterns become long. In this paper, we present BIDE, an efficient algorithm for mining frequent closed sequences without candidate maintenance. It adopts a novel sequence closure checking scheme called BI-Directional Extension and prunes the search space more deeply compared to the previous algorithms by using the BackScan pruning method. A thorough performance study with both sparse and dense, real, and synthetic data sets has demonstrated that BIDE significantly outperforms the previous algorithm: It consumes an order(s) of magnitude less memory and can be more than an order of magnitude faster. It is also linearly scalable in terms of database size.
Index Terms:
Data mining, frequent closed sequences, BI-Directional Extension.
Citation:
Jianyong Wang, Jiawei Han, Chun Li, "Frequent Closed Sequence Mining without Candidate Maintenance," IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 8, pp. 1042-1056, Aug. 2007, doi:10.1109/TKDE.2007.1043
Usage of this product signifies your acceptance of the Terms of Use.