The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (2007 vol.19)
pp: 523-537
ABSTRACT
The answer to a top-k query is an ordered set of tuples, where the ordering is based on how closely each tuple matches the query. In the context of middleware systems, new algorithms to answer top-k queries have been recently proposed. Among these, the Threshold Algorithm (TA) is the most well-known instance due to its simplicity and memory requirements. TA is based on an early-termination condition and can evaluate top-k queries without examining all the tuples. This top-k query model is prevalent not only over middleware systems, but also over plain relational data. In this work, we analyze the challenges that must be addressed to adapt TA to a relational database system. We show that, depending on the available indices, many alternative TA strategies can be used to answer a given query. Choosing the best alternative requires a cost model that can be seamlessly integrated with that of current optimizers. In this work, we address these challenges and conduct an extensive experimental evaluation of the resulting techniques by characterizing which scenarios can take advantage of TA-like algorithms to answer top-k queries in relational database systems.
INDEX TERMS
Query processing, relational databases, retrieval models, search process.
CITATION
Nicolas Bruno, Hui (Wendy) Wang, "The Threshold Algorithm: From Middleware Systems to the Relational Engine", IEEE Transactions on Knowledge & Data Engineering, vol.19, no. 4, pp. 523-537, April 2007, doi:10.1109/TKDE.2007.1011
30 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool