
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Jian Pei, Haixun Wang, Jian Liu, Ke Wang, Jianyong Wang, Philip S. Yu, "Discovering Frequent Closed Partial Orders from Strings," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 11, pp. 14671481, November, 2006.  
BibTex  x  
@article{ 10.1109/TKDE.2006.172, author = {Jian Pei and Haixun Wang and Jian Liu and Ke Wang and Jianyong Wang and Philip S. Yu}, title = {Discovering Frequent Closed Partial Orders from Strings}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {18}, number = {11}, issn = {10414347}, year = {2006}, pages = {14671481}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.172}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Discovering Frequent Closed Partial Orders from Strings IS  11 SN  10414347 SP1467 EP1481 EPD  14671481 A1  Jian Pei, A1  Haixun Wang, A1  Jian Liu, A1  Ke Wang, A1  Jianyong Wang, A1  Philip S. Yu, PY  2006 KW  Frequent patterns KW  closed patterns KW  partial orders KW  strings KW  data mining. VL  18 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process Models from Workflow Logs,” EDBT '98: Proc. Sixth Int'l Conf. Extending Database Technology, pp. 469483, 1998.
[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” Proc. 1993 ACMSIGMOD Int'l Conf. Management of Data (SIGMOD '93), pp. 207216, May 1993.
[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 1995 Int'l Conf. Data Eng. (ICDE '95), pp. 314, Mar. 1995.
[4] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential Pattern Mining Using a Bitmap Representation,” Proc. 2002 ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '02), pp. 429435, July 2002.
[5] A. BenDor, B. Chor, R. Karp, and Z. Yakhini, “Discovering Local Structure in Gene Expression Data: The OrderPreserving Submatrix Problem,” Proc. Sixth Ann. Int'l Conf. Computational Biology, pp. 4957, 2002.
[6] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino, “On the Complexity of Generating Maximal Frequent and Minimal Infrequent Sets,” Proc. Symp. Theoretical Aspects of Computer Science, pp. 133141, 2002.
[7] G. CasasGarriga, “Summarizing Sequential Data with Closed Partial Orders,” Proc. 2005 SIAM Int'l Conf. Data Mining, Apr. 2005.
[8] D.Y. Chiu, Y.H. Wu, and A.L.P. Chen, “An Efficient Algorithm for Mining Frequent Sequences by a New Strategy without Support Counting,” Proc. 20th IEEE Int'l Conf. Data Eng. (ICDE '04), pp.275286, 2004.
[9] G. Dong and J. Li, “Efficient Mining of Emerging Patterns: Discovering Trends and Differences,” Proc. 1999 Int'l Conf. Knowledge Discovery and Data Mining (KDD '99), pp. 4352, Aug. 1999.
[10] M. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential Pattern Mining with Regular Expression Constraints,” Proc. 1999 Int'l Conf. Very Large Data Bases (VLDB '99), pp. 223234, Sept. 1999.
[11] A. Gionis, T. Kujala, and H. Mannila, “Fragments of Order,” Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 129136, 2003.
[12] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R.S. Sharma, “Discovering All Most Specific Sentences,” ACM Trans. Database Systems, vol., 28, no. 2, pp. 140174, 2003.
[13] A. Inokuchi, T. Washio, and H. Motoda, “An AprioriBased Algorithm for Mining Frequent Substructures from Graph Data,” Proc. 2000 European Symp. Principle of Data Mining and Knowledge Discovery (PKDD '00), pp. 1323, Sept. 2000.
[14] H.C.M. Kum, J. Pei, and W. Wang, “Approxmap: Approximate Mining of Consensus Sequential Patterns,” Proc. 2003 SIAM Int'l Conf. Data Mining, May 2003.
[15] J. Liu and W. Wang, “OpCluster: Clustering by Tendency in High Dimensional Space,” Proc. Third IEEE Int'l Conf. Data Mining (ICDM '03), Nov. 2003.
[16] H. Mannila and C. Meek, “Global Partial Orders from Sequential Data,” Proc. 2000 ACM SIGKDD Int'l Conf. Knowledge Discovery in Databases (KDD '00), pp. 150160, Aug. 2000.
[17] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of Frequent Episodes in Event Sequences,” Data Mining and Knowledge Discovery, vol. 1, pp. 259289, 1997.
[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering Frequent Closed Itemsets for Association Rules,” Proc. Seventh Int'l Conf. Database Theory (ICDT '99), pp. 398416, Jan. 1999.
[19] J. Pei, J. Han, B. MortazaviAsl, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu, “PrefixSpan: Mining Sequential Patterns Efficiently by PrefixProjected Pattern Growth,” Proc. 2001 Int'l Conf. Data Eng. (ICDE '01), pp. 215224, Apr. 2001.
[20] J. Pei, J. Han, and W. Wang, “ConstraintBased Sequential Pattern Mining in Large Databases,” Proc. 2002 Int'l Conf. Information and Knowledge Management (CIKM '02), Nov. 2002.
[21] J. Pei, J. Liu, H. Wang, K. Wang, P.S. Yu, and J. Wang, “Efficiently Mining Frequent Closed Partial Orders,” Proc. Fifth IEEE Int'l Conf. Data Mining (ICDM '05), pp. 753756, IEEE, Nov. 2005
[22] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and Performance Improvements,” Proc. Fifth Int'l Conf. Extending Database Technology (EDBT '96), pp. 317, Mar. 1996.
[23] P. Tzvetkov, X. Yan, and J. Han, “TSP: Mining Topk Closed Sequential Patterns,” Proc. Third IEEE Int'l Conf. Data Mining (ICDM '03), Nov. 2003.
[24] J. Valdes, R.E. Tarjan, and E.L. Lawler, “The Recognition of Series Parallel Digraphs,” Proc. 11th Ann. ACM Symp. Theory of Computing, pp. 112, 1979.
[25] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow Mining: Discovering Process Models from Event Logs,” IEEE Trans. Knowledge and Data Eng., vol. 16, pp. 11281142, Sept. 2004.
[26] J. Wang and J. Han, “BIDE: Efficient Mining of Frequent Closed Sequences,” Proc. 20th IEEE Int'l Conf. Data Eng., pp. 7990, 2004.
[27] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets,” Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '03), 2003.
[28] X. Yan and J. Han, “Closegraph: Mining Closed Frequent Graph Patterns,” Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '03), 2003.
[29] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed Sequential Patterns in Large Databases,” Proc. 2003 SIAM Int'l Conf. Data Mining, May 2003.
[30] G. Yang, “The Complexity of Mining Maximal Frequent Itemsets and Maximal Frequent Patterns,” Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '04), 2004.
[31] J. Yang, P.S. Yu, W. Wang, and J. Han, “Mining Long Sequential Patterns in a Noisy Environment,” Proc. 2002 ACMSIGMOD Int'l Conf. Management of Data (SIGMOD '02), Jun. 2002.
[32] M.J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,” Machine Learning, vol. 42, nos. 12, pp. 3160, 2001.
[33] M.J. Zaki and C.J. Hsiao, “CHARM: An Efficient Algorithm for Closed Itemset Mining,” Proc. 2002 SIAM Int'l Conf. Data Mining, pp. 457473, Apr., 2002.