
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Navneet Panda, Edward Y. Chang, "KDX: An Indexer for Support Vector Machines," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 6, pp. 748763, June, 2006.  
BibTex  x  
@article{ 10.1109/TKDE.2006.101, author = {Navneet Panda and Edward Y. Chang}, title = {KDX: An Indexer for Support Vector Machines}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {18}, number = {6}, issn = {10414347}, year = {2006}, pages = {748763}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.101}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  KDX: An Indexer for Support Vector Machines IS  6 SN  10414347 SP748 EP763 EPD  748763 A1  Navneet Panda, A1  Edward Y. Chang, PY  2006 KW  Support vector machine KW  indexing KW  {\rm{top}}{\hbox{}}k retrieval. VL  18 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] C.C. Aggarwal and P.S. Yu, “Outlier Detection for High Dimensional Data,” Proc. ACM SIGMOD Conf., 2001.
[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The $R^{\ast}$ Tree: An Efficient and Robust Access Method for Points and Rectangles,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 322331, 1990.
[3] S. Berchtold, D. Keim, and H.P. Kriegel, “The XTree: An Index Structure for HighDimensional Data,” Proc. 22nd Conf. Very Large Databases, pp. 2839, 1996.
[4] C.L. Blake and C.J. Merz, UCI Repository of Machine Learning Databases, 1998.
[5] M. Brown, W. Grundy, D. Lin, N. Christianini, C. Sugnet, M. Jr, and D. Haussler, Support Vector Machine Classification of Microarray Gene Expression Data, UCSCCRL 9909, Dept. of Computer Science, Univ. of California at Santa Cruz, 1999, http://citeseer.ist.psu.edubrown99support.html .
[6] J. Chris, C. Burges, and B. Schölkopf, “Improving the Accuracy and Speed of Support Vector Machines,” Advances in Neural Information Processing Systems, M.C. Mozer, M.I. Jordan, and T. Petsche, eds., vol. 9, p. 375, The MIT Press, 1997.
[7] C.J.C. Burges, “Geometry and Invariance in Kernel Based Methods,” Advances in Kernel Methods, A.J. Smola, B. Schölkopf, C. Burges, eds., Cambridge, Mass.: MIT Press, 1998.
[8] E. Chang, K. Goh, G. Sychay, and G. Wu, “ContentBased Soft Annotation for Multimodal Image Retrieval Using Bayes Point Machines,” IEEE Trans. Circuits and Systems for Video Technology, special issue on conceptual and dynamical aspects of multimedia content description, vol. 13, no. 1, pp. 2638, 2003.
[9] E. Chang and S. Tong, “Svm_Active— Support Vector Machine Active Learning for Image Retrieval,” Proc. Ninth ACM Int'l Conf. Multimedia, pp. 107118, 2001.
[10] P. Ciaccia, M. Patella, and P. Zezula, “MTree: An Efficient Access Method for Similarity Search in Metric Spaces,” Proc. 23rd Int'l Conf. Very Large Databases, pp. 426435, 1997.
[11] R. Cooley, “Classification of News Stories Using Support Vector Machines,” Proc. 16th Int'l Joint Conf. Artificial Intelligence Text Mining Workshop, 1999.
[12] C. Cortes and V. Vapnik, “SupportVector Networks,” Machine Learning, vol. 20, no. 3, pp. 273297, 1995.
[13] H. Drucker, D. Wu, and V. Vapnik, “Support Vector Machines for Spam Categorization,” IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 10481054, 1999.
[14] T.S. Furey, N. Duffy, N. Cristianini, D. Bednarski, M. Schummer, and D. Haussler, “Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data,” Bioinformatics, vol. 16, no. 10, pp. 906914, 2000.
[15] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing,” The VLDB J., pp. 518529, 1999.
[16] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for Cancer Classification Using Support Vector Machines,” Machine Learning, vol. 46, nos. 1/3, pp. 389422, Jan. 2002.
[17] T. Joachims, “Text Categorization with Support Vector Machines: Learning with Many Relevant Features,” Proc. 10th European Conf. Machine Learning, C. Nédellec and C. Rouveirol, eds., pp. 137142, 1998.
[18] N. Katayama and S. Satoh, “The SRTree: An Index Structure for HighDimensional Nearest Neighbor Queries,” Proc. ACM SIGMOD Int'l Conf. on Management of Data, pp. 369380, 1997.
[19] H. Kim, P. Howland, and H. Park, “Dimension Reduction in Text Classification Using Support Vector Machines,” J. Machine Learning Research, to appear.
[20] C. Leslie, E. Eskin, and W.S. Noble, “The Spectrum Kernel: A String Kernel for SVM Protein Classification,” Proc. Pacific Symp. Biocomputing, R.B. Altman, A.K. Dunker, L. Hunter, K. Lauerdale, and T.E. Klein, eds., pp. 564575, 2002.
[21] C. Li, E. Chang, H. GarciaMolina, and G. Wilderhold, “Clindex: Approximate Similarity Queries in HighDimensional Spaces,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 4, July/Aug. 2002.
[22] K.I. Lin, H.V. Jagadish, and C. Faloutsos, “The TVTree: An Index Structure for HighDimensional Data,” VLDB J.: Very Large Data Bases, vol. 3, no. 4, pp. 517542, 1994.
[23] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines: An Application to Face Detection,” Proc. 1997 Conf. Computer Vision and Pattern Recognition (CVPR '97), pp. 130138, 1997.
[24] N. Panda and E.Y. Chang, “Exploiting Geometry for Support Vector Machine Indexing,” Proc. SIAM Int'l Conf. Data Mining, 2005.
[25] P. Pavlidis, J. Weston, J. Cai, and W.N. Grundy, “Gene Functional Classification from Heterogeneous Data,” Proc. Fifth Ann. Int'l Conf. Computational Biology, pp. 249255, 2001.
[26] B. Scholkopf, C. Burges, and V. Vapnik, “Extracting Support Data for a Given Task,” 1995.
[27] B. Scholkopf, R. Williamson, A. Smola, J. ShaweTaylor, and J. Platt, Support Vector Method for Novelty Detection, pp. 582588. MIT Press, 2000.
[28] S. Tong and D. Koller, “Support Vector Machine Active Learning with Applications to Text Classification,” Proc. 17th Int'l Conf. Machine Learning, P. Langley, ed., pp. 9991006, 2000.
[29] V. Vapnik, The Nature of Statistical Learning Theory. Springer Verlag, 1995.
[30] R. Weber, H.J. Schek, and S. Blott, “A Quantitative Analysis and Performance Study for SimilaritySearch Methods in HighDimensional Spaces,” Proc. 24th Int'l Conf. Very Large Data Bases, pp. 194205, 2427, 1998.