
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Hui Xiong, Shashi Shekhar, PangNing Tan, Vipin Kumar, "TAPER: A TwoStep Approach for AllStrongPairs Correlation Query in Large Databases," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 4, pp. 493508, April, 2006.  
BibTex  x  
@article{ 10.1109/TKDE.2006.68, author = {Hui Xiong and Shashi Shekhar and PangNing Tan and Vipin Kumar}, title = {TAPER: A TwoStep Approach for AllStrongPairs Correlation Query in Large Databases}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {18}, number = {4}, issn = {10414347}, year = {2006}, pages = {493508}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.68}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  TAPER: A TwoStep Approach for AllStrongPairs Correlation Query in Large Databases IS  4 SN  10414347 SP493 EP508 EPD  493508 A1  Hui Xiong, A1  Shashi Shekhar, A1  PangNing Tan, A1  Vipin Kumar, PY  2006 KW  Association analysis KW  data mining KW  Pearson's correlation coefficient KW  statistical computing. VL  18 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules Between Sets of Items in Large Databases,” Proc. 1993 ACM SIGMOD Int’l Conf. Management of Data, pp. 207216, 1993.
[2] C. Alexander, Market Models: A Guide to Financial Data Analysis. John Wiley & Sons, 2001.
[3] R. Bayardo, R. Agrawal, and D. Gunopulos, “ConstraintBased Rule Mining in Large, Dense Databases,” Data Mining and Knowledge Discovery J., pp. 217240, 2000.
[4] S. Brin, R. Motwani, and C. Silverstein., “Beyond Market Baskets: Generalizing Association Rules to Correlations,” Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 265276, 1997.
[5] C. Bucila, J. Gehrke, D. Kifer, and W.M. White, “Dualminer: A DualPruning Algorithm for Itemsets with Constraints,” Data Mining and Knowledge Discovery J. pp. 241272, 2003.
[6] D. Burdick, M. Calimlim, and J. Gehrke, “Mafia: A Maximal Frequent Itemset Algorithm for Transactional Databases,” Proc. 17th Int’l Conf. Data Eng. (ICDE), pp. 443452, 2001.
[7] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D. Ullman, and C. Yang, “Finding Interesting Associations without Support Pruning,” Proc. 16th Int’l Conf. Data Eng. (ICDE), pp. 489499, 2000.
[8] P. Cohen, J. Cohen, S.G. West, and L. Aiken, Applied Multiple Regression/Correlation Analysis for the Behavioral Science, third ed. Lawrence Erlbaum Assoc., 2002.
[9] W. Dumouchel and D. Pregibon, “Empirical Bayes Screening for MultiItem Associations,” Proc. Seventh ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 6776, 2001.
[10] G. Grahne, L.S. Lakshmanan, and X. Wang, “Efficient Mining of Constrained Correlated Sets,” Proc. 16th Int’l Conf. Data Eng., pp. 512521, 2000.
[11] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” Proc. 2000 ACM SIGMOD Int’l Conf. Management of Data, 2000.
[12] I.F. Ilyas, V. Markl, P.J. Haas, P. Brown, and A. Aboulnaga, “Cords: Automatic Discovery of Correlations and Soft Functional Dependencies,” Proc. 2004 ACM SIGMOD Int’l Conf. Management of Data, 2004.
[13] C. Jermaine, “The Computational Complexity of HighDimensional Correlation Search,” Proc. 2001 IEEE Int’l Conf. Data Mining (ICDM), pp. 249256, 2001.
[14] C. Jermaine, “Playing HideandSeek with Correlations,” Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 2003.
[15] S.K. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction, second ed., Radius Press, 1991.
[16] M. Kendall and J.D. Gibbons, Rank Correlation Methods, fifth ed. Oxford Univ., 1990.
[17] W.P. Kuo, T. Jenssen, A.J. Butte, L. OhnoMachado, and I.S. Kohane, “Analysis of Matched mRNA Measurements from Two Different Microarray Technologies,” Bioinformatics, vol. 18, no. 3, 2002.
[18] E.L. Lehmann and H.J.M. D'Abrera, Nonparametrics: Statistical Methods Based on Ranks. Prentice Hall, 1998.
[19] B. Liu, W. Hsu, and Y. Ma, “Mining Association Rules with Multiple Minimum Supports,” Proc. ACM SIGKDD, 1999.
[20] R. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang, “Exploratory Mining via Constrained Frequent Set Queries,” Proc. ACM SIGMOD Int’l Conf. Management Data, 1999.
[21] R. Rastogi and K. Shim, “Mining Optimized Association Rules with Categorical and Numeric Attributes,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 1, Jan. 2002.
[22] H.T. Reynolds, The Analysis of CrossClassifications. New York: The Free Press, 1977.
[23] C.J. Van Rijsbergen., Information Retrieval, second ed. London: Butterworths, 1979.
[24] R. Rymon, “Search through Systematic Set Enumeration,” Proc. Third Int’l Conf. Principles of Knowledge Representation and Reasoning, pp. 539550, 1992.
[25] H.V. Storch and F.W. Zwiers, Statistical Analysis in Climate Research, reprint ed. Cambridge Univ. Press, Feb. 2002.
[26] K. Wang, Y. He, D. Cheung, and Y.L. Chin, “Mining Confident Rules without Support Requirement,” Proc. 2001 ACM Int'l Conf. Information and Knowledge Management (CIKM), 2001.
[27] X. Wu, C. Zhang, and S. Zhang, “Mining Both Positive and Negative Association Rules,” Proc. 19th Int’l Conf. Machine Learning (ICML), pp. 658665, 2002.
[28] H. Xiong, S. Shekhar, P. Tan, and V. Kumar, “Exploiting a SupportBased Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs,” Proc. 10th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 334343, Aug. 2004.
[29] G.K. Zipf, Human Behavior and Principle of Least Effort: An Introduction to Human Ecology, Cambridge, Mass: Addison Wesley Press, 1949.