
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Chenyi Xia, Wynne Hsu, Mong Li Lee, Beng Chin Ooi, "BORDER: Efficient Computation of Boundary Points," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 3, pp. 289303, March, 2006.  
BibTex  x  
@article{ 10.1109/TKDE.2006.38, author = {Chenyi Xia and Wynne Hsu and Mong Li Lee and Beng Chin Ooi}, title = {BORDER: Efficient Computation of Boundary Points}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {18}, number = {3}, issn = {10414347}, year = {2006}, pages = {289303}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.38}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  BORDER: Efficient Computation of Boundary Points IS  3 SN  10414347 SP289 EP303 EPD  289303 A1  Chenyi Xia, A1  Wynne Hsu, A1  Mong Li Lee, A1  Beng Chin Ooi, PY  2006 KW  Boundary points KW  kNN join KW  knearest neighbor KW  reverse knearest neighbor. VL  18 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] C.C. Aggarwal and P.S. Yu, “Outlier Detection for High Dimensional Data,” Proc. SIGMOD, 2001.
[2] V. Barnett and T. Lewis, Outliers in Statistical Data. John Wiley and Sons, 1994.
[3] M. Basseville and I.V. Nikiforov, Detection of Abrupt Changes. PTR Prentice Hall, 1993.
[4] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, “The R*Tree: An Efficient and Robust Access Method for Points and Rectangles,” Proc. ACM SIGMOD, pp. 322331, 1990.
[5] C. Bohm, S. Berchtold, and D.A. Keim, “Searching in High Dimensional Spaces: Index Structures for Improving the Performance of Multimedia Databases,” ACM Computing Surveys, vol. 33, no. 3, pp. 322373, 2001.
[6] C. Bohm and F. Krebs, “The kNearest Neighbor Join: Turbo Charging the KDD Process,” Knowledge and Information Systems (KAIS), vol. 6, no. 6, pp. 728749, 2004.
[7] C. Bohm and F. Krebs, “Supporting KDD Applications by the kNearest Neighbor Join,” Proc. Int'l Conf. Database and Expert Systems Applications, pp. 504516, 2003.
[8] C. Bohm and H.P. Kriegel, “A Cost Model and Index Architecture for the Similarity Join,” Proc. Int'l Conf. Data Eng., pp. 411420, 2001.
[9] M.M. Breunig, H.P. Kriegel, R.T. Ng, and J. Sander, “Lof: Identifying DensityBased Local Outliers,” Proc. ACM SIGMOD, pp. 93104, 2000.
[10] B.E. Brodsky and B.S. Darkhovsky, Nonparametric Methods in ChangePoint Problems. Kluwer Academic Publishers, 1993.
[11] K. Chakrabarti and S. Mehrotra, “Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces,” Proc. Int'l Conf. Very Large Data Bases, pp. 89100, 2000.
[12] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, “A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proc. SIGKDD, pp. 226231, 1996.
[13] U.M. Fayyad, G. PiatetskyShapiro, and P. Smyth, Advances in Knowledge Discovery and Data Mining. AAAI Press, 1996.
[14] A. Guttman, “RTrees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM SIGMOD, pp. 4757, 1984.
[15] J. Han and M. Kamber, Data Mining Concepts and Techniques. Morgan Kaufmann Publishers, 2000.
[16] W. Hsu, M.L. Lee, B.C. Ooi, P.K. Mohanty, K.L. Teo, and C. Xia, “Advanced Database Technologies in a Diabetic Healthcare System,” Proc. Int'l Conf. Very Large Data Bases, pp. 10591062, 2002.
[17] Data Mining Software in Java, http://www.cs.waikato.ac.nz/mlweka, 2005.
[18] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264323, 1999.
[19] H. Jin, B.C. Ooi, H.T. Shen, C. Yu, and A.Y. Zhou, “An Adaptive and Efficient Dimensionality Reduction Algorithm for HighDimensional Indexing,” Proc. Int'l Conf. Data Eng., pp. 8798, 2003.
[20] G. Karypis, E.H. Han, and V. Kumar, “Chameleon: Hierarchical Clustering Using Dynamic Modeling,” Computer, vol. 32, no. 8, pp. 6875, 1999.
[21] G. Kollios, D. Gunopulos, and V.J. Tsotras, “Nearest Neighbor Queries in a Mobile Environment,” SpatioTemporal Database Management, pp. 119134, 1999.
[22] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse Nearest Neighbor Queries,” Proc. ACM SIGMOD, pp. 201212, 2000.
[23] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse Nearest Neighbor Aggregates over Data Streams,” Proc. Int'l Conf. Very Large Data Bases, 2002.
[24] L. Horvath and M. Csorgo, Limit Theorems in ChangePoint Analysis. Wiley, 1997.
[25] A. Singh, H. Ferhatosmanoglu, and A.S. Tosun, “High Dimensional Reverse Nearest Neighbor Queries,” Proc. Conf. Information and Knowledge Management, pp. 9198, 2003.
[26] M. Smid, “Closest Point Problems in Computational Geometry,” Handbook on Computational Geometry, Elsevier Science Publishing, 1997.
[27] I. Stanoi, D. Agrawal, and A.E. Abbadi, “Reverse Nearest Neighbor Queries for Dynamic Databases,” Proc. ACM SIGMOD Workshop Research Issues in Data Mining and Knowledge Discovery, pp. 4453, 2000.
[28] I. Stanoi, M. Riedewald, D. Agrawal, and A. El Abbadi, “Discovery of Influence Sets in Frequently Updated Databases,” Proc. Int'l Conf. Very Large Data Bases, pp. 99108, 2001.
[29] Y. Tao, D. Papadias, and X. Lian, “Reverse KNN Search in Arbitrary Dimensionality,” Proc. Int'l Conf. Very Large Data Bases, pp. 744755, 2004.
[30] C. Xia, H. Lu, B.C. Ooi, and J. Hu, “Gorder: An Efficient Method for KNN Join Processing,” Proc. Int'l Conf. Very Large Data Bases, 2004.
[31] C. Yang and K.I. Lin, “An Index Structure for Efficient Reverse Nearest Neighbor Queries,” Proc. Int'l Conf. Data Eng., pp. 485492, 2001.