
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Carlos Ordonez, "Integrating KMeans Clustering with a Relational DBMS Using SQL," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 2, pp. 188201, February, 2006.  
BibTex  x  
@article{ 10.1109/TKDE.2006.31, author = {Carlos Ordonez}, title = {Integrating KMeans Clustering with a Relational DBMS Using SQL}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {18}, number = {2}, issn = {10414347}, year = {2006}, pages = {188201}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.31}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Integrating KMeans Clustering with a Relational DBMS Using SQL IS  2 SN  10414347 SP188 EP201 EPD  188201 A1  Carlos Ordonez, PY  2006 KW  Index Terms Clustering KW  Kmeans KW  SQL KW  relational DBMS. VL  18 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] C. Aggarwal and P. Yu, “Finding Generalized Projected Clusters in High Dimensional Spaces,” Proc. ACM SIGMOD Conf., pp. 7081, 2000.
[2] P. Bradley, U. Fayyad, and C. Reina, “Scaling Clustering Algorithms to Large Databases,” Proc. ACM Int'l Conf. Knowledge Discovery and Data Mining, pp. 915, 1998.
[3] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman, “Nonstop SQL/MX Primitives for Knowledge Discovery,” Proc. ACM Int'l Conf. Knowledge Discovery and Data Mining, pp. 425429, 1999.
[4] R. Duda and P. Hart, Pattern Classification and Scene Analysis. John Wiley and Sons, 1973.
[5] F. Fanstrom, J. Lewis, and C. Elkan, “Scalability for Clustering Algorithms Revisited,” SIGKDD Explorations, vol. 2, no. 1, pp. 5157, June 2000.
[6] U. Fayyad, G. PiatetskyShapiro, and P. Smyth, “The KDD Process for Extracting Useful Knowledge from Volumes of Data,” Comm. ACM, vol. 39, no. 11, pp. 2734, Nov. 1996.
[7] B. Fritzke, “The LBGU Method for Vector Quantization— An Improvement over LBG Inspired from Neural Networks,” Neural Processing Letters, vol. 5, no. 1, pp. 3545, 1997.
[8] G. Graefe, U. Fayyad, and S. Chaudhuri, “On the Efficient Gathering of Sufficient Statistics for Classification from Large SQL Databases,” Proc. ACM Int'l Conf. Knowledge Discovery and Data Mining, pp. 204208, 1998.
[9] G. Hammerly and C. Elkan, “Alternatives to kMeans Clustering that Find Better Solutions,” Proc. ACM Conf. Information and Knowledge Management, pp. 600607, 2002.
[10] J. Han, Y. Fu, W. Wang, J. Chiang, O.R. Zaiane, and K. Koperski, “DBMiner: Interactive Mining of MultipleLevel Knowledge in Relational Databases,” Proc. ACM SIGMOD Conf., p. 550, 1996.
[11] T. Imielinski and A. Virmani, “MSQL: A Query Language for Database Mining,” Data Mining and Knowledge Discovery, vol. 3, no. 4, pp. 373408, 1999.
[12] H. Jamil, “Ad Hoc Association Rule Mining as SQL3 Queries,” Proc. IEEE Int'l Conf. Data Mining, pp. 609612, 2001.
[13] J.B. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. Fifth Berkeley Symp. Math. Statistics and Probability, 1967.
[14] R. Meo, G. Psaila, and S. Ceri, “An Extension to SQL for Mining Association Rules,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 195224, 1998.
[15] C. Ordonez, “Clustering Binary Data Streams with KMeans,” Proc. ACM Data Mining and Knowledge Discovery Workshop, pp. 1017, 2003.
[16] C. Ordonez, “Programming the KMeans Clustering Algorithm in SQL,” Proc. ACM Int'l Conf. Knowledge Discovery and Data Mining, pp. 823828, 2004.
[17] C. Ordonez and P. Cereghini, “SQLEM: Fast Clustering in SQL Using the EM Algorithm,” Proc. ACM SIGMOD Conf., pp. 559570, 2000.
[18] C. Ordonez and E. Omiecinski, “FREM: Fast and Robust EM Clustering for Large Data Sets,” Proc. ACM Conf. Information and Knowledge Management, pp. 590599, 2002.
[19] C. Ordonez and E. Omiecinski, “Efficient DiskBased KMeans Clustering for Relational Databases,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 8, pp. 909921, Aug. 2004.
[20] D. Papadopoulos, C. Domeniconi, D. Gunopulos, and S. Ma, “Clustering Gene Expression Data in SQL Using Locally Adaptive Metrics,” Proc. ACM Data Mining and Knowledge Discovery Workshop, pp. 3541, 2003.
[21] D. Pelleg and A. Moore, “Accelerating Exact KMeans Algorithms with Geometric Reasoning,” Proc. ACM Int'l Conf. Knowledge Discovery and Data Mining, pp. 277281, 1999.
[22] S. Roweis and Z. Ghahramani, “A Unifying Review of Linear Gaussian Models,” Neural Computation, vol. 11, pp. 305345, 1999.
[23] S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating Mining with Relational Databases: Alternatives and Implications,” Proc. ACM SIGMOD Conf., pp. 343354, 1998.
[24] K. Sattler and O. Dunemann, “SQL Database Primitives for Decision Tree Classifiers,” Proc. ACM Conf. Information and Knowledge Management, pp. 379386, 2001.
[25] H. Wang, C. Zaniolo, and C.R. Luo, “ATLAS: A Small but Complete SQL Extension for Data Mining and Data Streams,” Proc. Very Large Databases Conf., pp. 11131116, 2003.
[26] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta, L. Sheng, and S. Subramanian, “Spreadsheets in RDBMS for OLAP,” Proc. ACM SIGMOD Conf., pp. 5263, 2003.
[27] L. Xu and M. Jordan, “On Convergence Properties of the EM Algorithm for Gaussian Mixtures,” Neural Computation, vol. 8, no. 1, pp. 129151, 1996.
[28] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proc. ACM SIGMOD Conf., pp. 103114, 1996.