
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Fabrizio Angiulli, Stefano Basta, Clara Pizzuti, "DistanceBased Detection and Prediction of Outliers," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 2, pp. 145160, February, 2006.  
BibTex  x  
@article{ 10.1109/TKDE.2006.29, author = {Fabrizio Angiulli and Stefano Basta and Clara Pizzuti}, title = {DistanceBased Detection and Prediction of Outliers}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {18}, number = {2}, issn = {10414347}, year = {2006}, pages = {145160}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.29}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  DistanceBased Detection and Prediction of Outliers IS  2 SN  10414347 SP145 EP160 EPD  145160 A1  Fabrizio Angiulli, A1  Stefano Basta, A1  Clara Pizzuti, PY  2006 KW  Index Terms Distancebased outliers KW  outlier detection KW  outlier prediction KW  data mining. VL  18 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] F. Angiulli and C. Pizzuti, “Outlier Mining in Large HighDimensional Data Sets,” IEEE Trans. Knowledge and Data Eng., vol. 2, no. 17, pp. 203215, Feb. 2005.
[2] A. Arning, C. Aggarwal, and P. Raghavan, “A Linear Method for Deviation Detection in Large Databases,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '96), pp. 164169, 1996.
[3] V. Barnett and T. Lewis, Outliers in Statistical Data. John Wiley & Sons, 1994.
[4] S.D. Bay and M. Schwabacher, “Mining DistanceBased Outliers in Near Linear Time with Randomization and a Simple Pruning Rule,” Proc. Int'l Conf. Knowledge Discovery and Data Mining (KDD '03), 2003.
[5] M.M. Breunig, H. Kriegel, R.T. Ng, and J. Sander, “LOF: Identifying DensityBased Local Outliers,” Proc. Int'l Conf. Managment of Data (SIGMOD '00), 2000.
[6] Defense Advanced Research Projects Agency DARPA, “Intrusion Detection Evaluation,” http://www.ll.mit.edu/IST/idevalindex. html , 1998.
[7] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data,” Applications of Data Mining in Computer Security, Kluwer, 2002.
[8] T. Fawcett and F. Provost, “Adaptive Fraud Detection,” Data Mining and Knowledge Discovery, vol. 1, pp. 291316, 1997.
[9] C. Feng, A. Sutherland, S. King, S. Muggleton, and R. Henery, “Comparison of Machine Learning Classifiers to Statistics and Neural Networks,” Proc. AI & Stats Conf. 93, 1993.
[10] S. Floyd and M. Warmuth, “Sample Compression, Learnability, and the VapnikChervonenkis Dimension,” Machine Learning, vol. 211, no. 3, pp. 269304, 1995.
[11] V. Gaede and O. Günther, “Multidimensional Access Methods,” ACM Computing Surveys, vol. 30, no. 2, pp. 170231, 1998.
[12] M.R. Garey and D.S. Johnson, Computer and Intractability. New York: W.H. Freeman and Company, 1979.
[13] J. Han and M. Kamber, Data Mining, Concepts and Technique. San Francisco: Morgan Kaufmann, 2001.
[14] W. Jin, A.K.H. Tung, and J. Han, “Mining Topn Local Outliers in Large Databases,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '01), 2001.
[15] E. Knorr and R. Ng, “Algorithms for Mining DistanceBased Outliers in Large Datasets,” Proc. Int'l Conf. Very Large Databases (VLDB '98), pp. 392403, 1998.
[16] E. Knorr and R. Ng, “Finding Intensional Knowledge of DistanceBased Outliers,” Proc. Int'l Conf. Very Large Databases (VLDB '99), pp. 211222, 1999.
[17] E. Knorr, R. Ng, and V. Tucakov, “DistanceBased Outlier: Algorithms and Applications,” VLDB J., vol. 8, nos. 34, pp. 237253, 2000.
[18] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection,” Proc. SIAM Int'l Conf. Data Mining (SIAM03), 2003.
[19] W. Lee, S.J. Stolfo, and K.W. Mok, “Mining Audit Data to Build Intrusion Detection Models,” Proc. Int'l Conf Knowledge Discovery and Data Mining (KDD98), pp. 6672, 1998.
[20] L. Mangasarian and W.H. Wolberg, “Cancer Diagnosis via Linear Programming,” SIAM News, vol. 25, no. 5, pp. 118, 1990.
[21] D. Peleg, G. Schechtman, and A. Wool, “Randomized Approximation of Bounded Multicovering Problems,” Algorithmica, vol. 18, no. 1, pp. 4466, 1997.
[22] F. Provost, T. Fawcett, and R. Kohavi, “The Case Against Accuracy Estimation for Comparing Induction Algorithms,” Proc. Int'l Conf. Machine Learning (ICML '98), 1998.
[23] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient Algorithms for Mining Outliers from Large Data Sets,” Proc. Int'l Conf. Managment of Data (SIGMOD '00), pp. 427438, 2000.
[24] B. Schölkopf, C. Burges, and V. Vapnik, “Extracting Support Data for a Given Task,” Proc First Int'l Conf. Knowledge Discovery and Data Mining, pp. 252257, 1995.
[25] L. Torgo and R. Ribeiro, “Predicting Outliers,” Proc. Int'l Conf. Principles of Data Mining and Knowledge Discovery (PKDD '03), pp. 447458, 2003.
[26] K. Yamanishi and J. Takeuchi, “Discovering Outlier Filtering Rules from Unlabeled Data,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '01), pp. 389394, 2001.