
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Kun Liu, Hillol Kargupta, Jessica Ryan, "Random ProjectionBased Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 1, pp. 92106, January, 2006.  
BibTex  x  
@article{ 10.1109/TKDE.2006.14, author = {Kun Liu and Hillol Kargupta and Jessica Ryan}, title = {Random ProjectionBased Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {18}, number = {1}, issn = {10414347}, year = {2006}, pages = {92106}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.14}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Random ProjectionBased Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining IS  1 SN  10414347 SP92 EP106 EPD  92106 A1  Kun Liu, A1  Hillol Kargupta, A1  Jessica Ryan, PY  2006 KW  Index Terms Random projection KW  multiplicative data perturbation KW  privacy preserving data mining. VL  18 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] L. Sweeney, “kAnonymity: A Model for Protecting Privacy,” Int'l J. Uncertainty, Fuzziness, and KnowledgeBased Systems, vol. 10, no. 5, pp. 557570, 2002.
[2] S. Chawla, C. Dwork, and F. McSherry, “Toward Privacy in Public Databases,” Proc. Second Theory of Cryptography Conf. (TCC'05), Feb. 2005.
[3] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “On the Privacy Preserving Properties of Random Data Perturbation Techniques,” Proc. IEEE Int'l Conf. Data Mining, Nov. 2003.
[4] W.B. Johnson and J. Lindenstrauss, “Extensions of Lipshitz Mapping into Hilbert Space,” Contemporary Math., vol. 26, pp. 189206, 1984.
[5] C.K. Liew, U.J. Choi, and C.J. Liew, “A Data Distortion by Probability Distribution,” ACM Trans. Database Systems (TODS), vol. 10, no. 3, pp. 395411, 1985.
[6] E. Lefons, A. Silvestri, and F. Tangorra, “An Analytic Approach to Statistical Databases,” Proc. Ninth Int'l Conf. Very Large Data Bases, pp. 260274, Nov. 1983.
[7] N.R. Adam and J.C. Worthmann, “SecurityControl Methods for Statistical Databases: A Comparative Study,” ACM Computing Surveys (CSUR), vol. 21, no. 4, pp. 515556, 1989.
[8] R. Agrawal and R. Srikant, “Privacy Preserving Data Mining,” Proc. ACM SIGMOD Conf. Management of Data, pp. 439450, May 2000.
[9] J.J. Kim and W.E. Winkler, “Multiplicative Noise for Masking Continuous Data,” Technical Report Statistics #200301, Statistical Research Division, US Bureau of the Census, Washington D.C., Apr. 2003.
[10] S. Warner, “Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias,” J. Am. Statistical Assoc., vol. 60, pp. 6369, 1965.
[11] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Privacy Preserving Mining of Association Rules,” Proc. Eighth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD'02), July 2002.
[12] A. Evfimevski, J. Gehrke, and R. Srikant, “Limiting Privacy Breaches in Privacy Preserving Data Mining,” Proc. ACM SIGMOD/PODS Conf., June 2003.
[13] S. Agrawal and J.R. Haritsa, “A Framework for HighAccuracy PrivacyPreserving Mining,” Proc. 21st Int'l Conf. Data Eng. (ICDE'05), pp. 193204, Apr. 2005.
[14] T. Dalenius and S.P. Reiss, “DataSwapping: A Technique for Disclosure Control,” J. Statistical Planning and Inference, vol. 6, pp. 7385, 1982.
[15] S.E. Fienberg and J. McIntyre, “Data Swapping: Variations on a Theme by Dalenius and Reiss,” technical report, Nat'l Inst. of Statistical Sciences, Research Triangle Park, NC, 2003.
[16] A.C. Yao, “How to Generate and Exchange Secrets,” Proc. 27th IEEE Symp. Foundations of Computer Science, pp. 162167, 1986.
[17] B. Pinkas, “Cryptographic Techniques for Privacy Preserving Data Mining,” SIGKDD Explorations, vol. 4, no. 2, pp. 1219, 2002.
[18] O. Goldreich, The Foundations of Cryptography, vol. 2, chapter 7. Cambridge Univ. Press, 2004.
[19] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu, “Tools for Privacy Preserving Distributed Data Mining,” ACM SIGKDD Explorations, vol. 4, no. 2, 2003.
[20] V.S. Verykios, E. Bertino, I.N. Fovino, L.P. Provenza, Y. Saygin, and Y. Theodoridis, “StateoftheArt in Privacy Preserving Data Mining,” ACM SIGMOD Record, vol. 3, no. 1, pp. 5057, Mar. 2004.
[21] B.H. Park and H. Kargupta, “Distributed Data Mining,” The Handbook of Data Mining, ser. Human Factors and Ergonomics, pp. 341358, N. Ye, ed., Lawrence Erlbaum Associates, Inc., 2003.
[22] K. Liu, H. Kargupta, J. Ryan, and K. Bhaduri, “Distributed Data Mining Bibliography,” http://www.csee.umbc.edu/~hillolDDMBIB/, 2004.
[23] S. Merugu and J. Ghosh, “PrivacyPreserving Distributed Clustering Using Generative Models,” Proc. Third IEEE Int'l Conf. Data Mining (ICDM'03), Nov. 2003.
[24] D. Meng, K. Sivakumar, and H. Kargupta, “Privacy Sensitive Bayesian Network Parameter Learning,” Proc. Fourth IEEE Int'l Conf. Data Mining (ICDM'04), Nov. 2004.
[25] M.J. Atallah, E. Bertino, A.K. Elmagarmid, M. Ibrahim, and V.S. Verykios, “Disclosure Limitation of Sensitive Rules,” Proc. IEEE Knowledge and Data Eng. Workshop, pp. 4552, 1999.
[26] V.S. Verykios, A.K. Elmagarmid, B. Elisa, Y. Saygin, and D. Elena, “Association Rule Hiding,” IEEE Trans. Knowledge and Data Eng., 2003.
[27] Y. Saygin, V.S. Verykios, and C. Clifton, “Using Unknowns to Prevent Discovery of Association Rules,” SIGMOD Record, vol. 30, no. 4, pp. 4554, Dec. 2001.
[28] E.W. Weisstein et al., “Orthogonal Transformation,” MathWorldA Wolfram Web Resource, 2004.
[29] S.R.M. Oliveira and O.R. Zaïane, “Privacy Preserving Clustering by Data Transformation,” Proc. 18th Brazilian Symp. Databases, pp. 304318, Oct. 2003.
[30] P. Common, “Independent Component Analysis: A New Concept?” IEEE Trans. Signal Processing, vol. 36, pp. 287314, 1994.
[31] A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Networks, vol. 13, no. 4, pp. 411430, June 2000.
[32] X.R. Cao and R.W. Liu, “A General Approach to Blind Source Separation,” IEEE Trans. Signal Processing, vol. 44, pp. 562571, 1996.
[33] M.L. Eaton and M.D. Perlman, “The NonSingularity of Generalized Sample Covariance Matrices,” The Annals of Statistics, vol. 1, no. 4, pp. 710717, 1973.
[34] A.K. Gupta and D.K. Nagar, Matrix Variate Distributions, H. Brezis, R.G. Douglas, and A. Jeffrey, eds. Chapan & Hall/CRC, 1999.
[35] W. Hardle and L. Simar, Applied Multivariate Statistical Analysis. chapter 2.1, pp. 5763, Springer, 2003.
[36] J. Eriksson and V. Koivunen, “Identifiability and Separability of Linear ICA Models Revisited,” Proc. Fourth Int'l Symp. Independent Component Analysis and Blind Signal Separation (ICA2003), Apr. 2003.
[37] M.S. Lewicki and T.J. Sejnowski, “Learning Overcomplete Representations,” Neural Computation, vol. 12, no. 2, pp. 337365, 2000.
[38] R. HechtNielsen, “Context Vectors: General Purpose Approximate Meaning Representations SelfOrganized from Raw Data,” Computational Intelligence: Imitating Life, pp. 4356, 1994.
[39] R.I. Arriaga and S. Vempala, “An Algorithmic Theory of Learning: Robust Concepts and Random Projection,” Proc. 40th Ann. Symp. Foundations of Computer Science, pp. 616623, Oct. 1999.
[40] S. Kaski, “Dimensionality Reduction by Random Mapping: Fast Similarity Computation for Clustering,” Proc. Int'l Joint Conf. Neural Networks (IJCNN'98), vol. 1, pp. 413418, 1998.
[41] C. Giannella, K. Liu, T. Olsen, and H. Kargupta, “Communication Efficient Construction of Decision Trees over Heterogeneously Distributed Data,” Proc. Fourth IEEE Int'l Conf. Data Mining (ICDM'04), Nov. 2004.
[42] J.W. Demmel and N.J. Higham, “Improved Error Bounds for Underdetermined System Solvers,” Technical Report CS90113, Computer Science Dept., Univ. of Tennessee, Knoxville, TN, Aug. 1990.
[43] W. Du, Y.S. Han, and S. Chen, “PrivacyPreserving Multivariate Statistical Analysis: Linear Regression and Classification,” Proc. 2004 SIAM Int'l Conf. Data Mining (SDM04), Apr. 2004.
[44] M.J. Atallah and W. Du, “Secure MultiParty Computational Geometry,” Proc. WADS2001: Seventh Int'l Workshop on Algorithms and Data Structures, pp. 165179, Aug. 2001.
[45] W. Du and Z. Zhan, “Building Decision Tree Classifier on Private Data,” Proc. IEEE Int'l Conf. Privacy, Security, and Data Mining, pp. 18, Dec. 2002.
[46] J.S. Vaidya and C. Clifton, “Privacy Preserving Association Rule Mining in Vertically Partitioned Data,” Proc. Eighth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, July 2002.