
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Themis Palpanas, Nick Koudas, Alberto Mendelzon, "Using Datacube Aggregates for Approximate Querying and Deviation Detection," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 11, pp. 14651477, November, 2005.  
BibTex  x  
@article{ 10.1109/TKDE.2005.187, author = {Themis Palpanas and Nick Koudas and Alberto Mendelzon}, title = {Using Datacube Aggregates for Approximate Querying and Deviation Detection}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {17}, number = {11}, issn = {10414347}, year = {2005}, pages = {14651477}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.187}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Using Datacube Aggregates for Approximate Querying and Deviation Detection IS  11 SN  10414347 SP1465 EP1477 EPD  14651477 A1  Themis Palpanas, A1  Nick Koudas, A1  Alberto Mendelzon, PY  2005 KW  Index Terms Data warehouse KW  datacube KW  approximate query answering KW  deviation detection. VL  17 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] A. Arning, R. Agrawal, and P. Raghavan, “A Linear Method for Deviation Detection in Large Databases,” Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 164169, Aug. 1996.
[2] S. Agrawal, S. Chaudhuri, and V.R. Narasayya, “Automated Selection of Materialized Views and Indexes in SQL Databases,” Proc. Int'l Conf. Very Large Databases, pp. 496505, Sept. 2000.
[3] S. Acharya, P.B. Gibbons, V. Poosala, and S. Ramaswamy, “Join Synopses for Approximate Query Answering,” Proc. ACM SIGMOD Int'l Conf., pp. 275286, June 1999.
[4] S. AbadMota, “Approximate Query Processing with Summary Tables in Statistical Databases,” Proc. Int'l Conf. Extending Database Technology, pp. 499515, Mar. 1992.
[5] N. Bruno and S. Chaudhuri, “Exploiting Statistics on Query Expressions for Optimization,” Proc. ACM SIGMOD Int'l Conf., pp. 263274, June 2002.
[6] D. Bertsekas, Constrained Optimization and 6 Multiplier Methods. Academic Press, 1982.
[7] Y.M.M. Bishop, S.E. Fienberg, and P.W. Holland, Discrete Multivariate Analysis: Theory and Practice. MIT Press, 1975.
[8] M.M. Breunig, H.P. Kriegel, R.T. Ng, and J. Sander, “LOF: Identifying DensityBased Local Outliers,” Proc. ACM SIGMOD Int'l Conf., pp. 2132, May 2000.
[9] A. Berger, S. Pietra, and V. Pietra, “A Maximum Entropy Approach to Natural Language Modelling,” Computational Linguistics, vol. 22, no. 1, May 1996.
[10] D. Barbará and M. Sullivan, “QuasiCubes: Exploiting Approximations in Multidimensional Databases,” ACM SIGMOD Record, vol. 26, no. 3, pp. 1217, 1997.
[11] D. Barbará and X. Wu, “Using Loglinear Models to Compress Datacubes,” WebAge Information Management, pp. 311322, June 2000.
[12] S. Chaudhuri, A. Gupta, and V.R. Narasayya, “Compressing SQL Workloads,” Proc. ACM SIGMOD Int'l Conf., pp. 488499, June 2002.
[13] S.F. Chen and R. Rosenfeld, “A Gaussian Prior for Smoothing Maximum Entropy Models,” Technical Report CMUCS99108, Carnegie Mellon Univ., Feb. 1999.
[14] T. Cover and J. Thomas, Elements of Information Theory. Wiley, 1991.
[15] W.E. Deming and F.F. Stephan, “On a Least Square Adjustment of a Sampled Frequency Table When the Expected Marginal Totals Are Known,” Annals of Math. Statistics, vol. 11, pp. 427444, 1940.
[16] C. Faloutsos, H.V. Jagadish, and N. Sidiropoulos, “Recovering Information from Summary Data,” Proc. Very Large Databases Conf., pp. 3645, Aug. 1997.
[17] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data Cube: A Relational Aggregation Operator Generalizing GroupBy, CrossTab, and SubTotals.” Proc. Int'l Conf. Data Eng., pp. 152159, Mar. 1996.
[18] Y. Ioannidis and V. Poosala, “Balancing Histogram Optimality and Practicality for Query Result Size Estimation,” Proc. ACM SIGMOD, pp. 233244, June 1995.
[19] H.V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K.C. Sevcik, and T. Suel, “Optimal Histograms with Quality Guarantees,” Proc. Int'l Conf. Very Large Data Bases, pp. 275286, Aug. 1998.
[20] H.V. Jagadish, L.V.S. Lakshmanan, and D. Srivastava, “Snakes and Sandwiches: Optimal Clustering Strategies for a Data Warehouse,” Proc. ACM SIGMOD, pp. 3748, June 1999.
[21] H.V. Jagadish, I.S. Mumick, and A. Silberschatz, “View Maintenance Issues in the Chronicle Data Model,” Proc. ACM Symp. Principles of Database Systems, pp. 113124, June 1995.
[22] J.N. Kapur and H.K. Kesavan, Entropy Optimization Principles with Applications. Academic Press, Inc., 1992.
[23] E.M. Knorr and R.T. Ng, “Algorithms for Mining DistanceBased Outliers in Large Datasets,” Proc. Int'l Conf. Very Large Data Bases, pp. 392403, Aug. 1998.
[24] E.M. Knorr and R.T. Ng, “Finding Intensional Knowledge of DistanceBased Outliers,” Proc. Int'l Conf. Very Large Data Bases, pp. 211222, Sept. 1999.
[25] S. Kullback, Information Theory and Statistics. John Wiley and Sons, 1968.
[26] G.M. Lohman and S.S. Lightstone, “SMART: Making DB2 (More) Autonomic,” Proc. Int'l Conf. Very Large Data Bases, pp. 877879, Aug. 2002.
[27] F. Malvestuto, “A Universal Scheme Approach to Statistical Databases Containing Homogeneous Summary Tables,” ACM Trans. Database Systems, vol. 18, no. 4, pp. 678708, Dec. 1993.
[28] H. Mannila, D. Pavlov, and P. Smyth, “Prediction with Local Patterns Using CrossEntropy,” Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 357361, Aug. 1999.
[29] G.S. Manku, S. Rajagopalan, and B.G. Lindsay, “Random Sampling Techniques for Space Efficient Online Computation of Order Statistics of Large Datasets,” Proc. ACM SIGMOD, pp. 251262, June 1999.
[30] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita, “Improved Histograms for Selectivity Estimation of Range Predicates,” Proc. ACM SIGMOD, pp. 294305, June 1996.
[31] D. Pavlov, H. Mannila, and P. Smyth, “Probabilistic Models for Query Approximation with Large Sparse Binary Data Sets,” Proc. Conf. Uncertainty in Artificial Intelligence, 2000.
[32] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient Algorithms for Mining Ouliers from Large Data Sets” Proc. ACM SIGMOD, pp. 427438, May 2000.
[33] S. Sarawagi, R. Agrawal, and N. Megiddo, “DiscoverySriven Exploration of OLAP Data Cubes,” Proc. Int'l Conf. Extending Database Technology, pp. 68182, Mar. 1998.
[34] S. Sarawagi, “UserAdaptive Exploration of Multidimensional Data,” Proc. Int'l Conf. Very Large Data Bases, pp. 307316, Sept. 2000.
[35] J. Shanmugasundaram, U.M. Fayyad, and P.S. Bradley, “Compressed Data Cubes for OLAP Aggregate Query Approximation on Continuous Dimensions,” Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 223232, Aug. 1999.
[36] M. Stillger, G.M. Lohman, V. Markl, and M. Kandil, “LEO— DB2's LEarning Optimizer,” Proc. Int'l Conf. Very Large Data Bases, pp. 1928, Sept. 2001.
[37] J.S. Vitter, M. Wang, and B. Iyer, “Data Cube Approximation and Histograms via Wavelets,” Proc. ACM Int'l. Conf. Information and Knowledge Management, pp. 96104, 1998.
[38] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata, “Answering Complex SQL Queries Using Automatic Summary Tables,” Proc. ACM SIGMOD, pp. 105116, May 2000.