
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Jieping Ye, Qi Li, Hui Xiong, Haesun Park, Ravi Janardan, Vipin Kumar, "IDR/QR: An Incremental Dimension Reduction Algorithm via QR Decomposition," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 9, pp. 12081222, September, 2005.  
BibTex  x  
@article{ 10.1109/TKDE.2005.148, author = {Jieping Ye and Qi Li and Hui Xiong and Haesun Park and Ravi Janardan and Vipin Kumar}, title = {IDR/QR: An Incremental Dimension Reduction Algorithm via QR Decomposition}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {17}, number = {9}, issn = {10414347}, year = {2005}, pages = {12081222}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.148}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  IDR/QR: An Incremental Dimension Reduction Algorithm via QR Decomposition IS  9 SN  10414347 SP1208 EP1222 EPD  12081222 A1  Jieping Ye, A1  Qi Li, A1  Hui Xiong, A1  Haesun Park, A1  Ravi Janardan, A1  Vipin Kumar, PY  2005 KW  Index Terms Dimension reduction KW  linear discriminant analysis KW  incremental learning KW  QR Decomposition KW  Singular Value Decomposition (SVD). VL  17 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] C.C. Aggarwal, “On the Effects of Dimensionality Reduction on High Dimensional Similarity Search,” Proc. ACM Symp. Principles of Database Systems Conf., 2001.
[2] P.N. Belhumeour, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711720, July 1997.
[3] M.W. Berry, S.T. Dumais, and G.W. O'Brie, “Using Linear Algebra for Intelligent Information Retrieval,” SIAM Rev., vol. 37, pp. 573595, 1995.
[4] C. Bohm, S. Berchtold, and D.A. Keim, “Searching in HighDimensional Spaces: Index Structures for Improving the Performance of Multimedia Databases,” ACM Computing Surveys, vol. 33, no. 3, pp. 322373, 2001.
[5] V. Castelli, A. Thomasian, and C.S. Li, “Csvd: Clustering and Singular Value Decomposition for Approximate Similarity Searches in High Dimensional Space,” IEEE Trans. Knowledge Discovery and Data Eng., vol. 15, no. 3, pp. 671685, May/June 2003.
[6] S. Chakrabarti, S. Roy, and M. Soundalgekar, “Fast and Accurate Text Classification via Multiple Linear Discriminant Projections,” Proc. Very Large Data Bases Conf., pp. 658669, 2002.
[7] S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkeler, and H. Zhang, “An Eigenspace Update Algorithm for Image Analysis,” Graphical Models and Image Processing: GMIP, vol. 59, no. 5, pp. 321332, 1997.
[8] C. Chatterjee and V.P. Roychowdhury, “On SelfOrganizing Algorithms and Networks for ClassSeparability Features,” IEEE Trans. Neural Networks, vol. 8, no. 3, pp. 663678, 1997.
[9] J.W. Daniel, W.B. Gragg, L. Kaufman, and G.W. Stewart, “Reorthogonalization and Stable Algorithms for Updating the GramSchmidt Gr Factorization,” Math. Computation, vol. 30, pp. 772795, 1976.
[10] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman, “Indexing by Latent Semantic Analysis,” J. Soc. Information Science, vol. 41, pp. 391407, 1990.
[11] I.S. Dhillon and D.S. Modha, “Concept Decompositions for Large Sparse Text Data Using Clustering,” Machine Learning, vol. 42, pp. 143175, 2001.
[12] R.O. Duda, P.E. Hart, and D. Stork, Pattern Classification. Wiley, 2000.
[13] S. Dudoit, J. Fridlyand, and T.P. Speed, “Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data,” J. Am. Statistical Assoc., vol. 97, no. 457, pp. 7787, 2002.
[14] J. Yan et al. “IMMC: Incremental Maximum Margin Criterion,” Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 725730, 2004.
[15] K. Hiraoka et al. “Fast Algorithm for Online Linear Discriminant Analysis,” IEICE Trans. Fundamentals, vol. E84A, no. 6, pp. 14311441, 2001.
[16] J.H. Friedman, “Regularized Discriminant Analysis,” J. Am. Statistical Assoc., vol. 84, no. 405, pp. 165175, 1989.
[17] K. Fukunaga, Introduction to Statistical Pattern Classification. Academic Press, 1990.
[18] G.H. Golub and C.F. Van Loan, Matrix Computations, third ed. Baltimore, M.D.: The Johns Hopkins Univ. Press, 1996.
[19] P. Hall, D. Marshall, and R. Martin, “Merging and Splitting Eigenspace Models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 9, pp. 10421049, Sept. 2000.
[20] T. Hastie and R. Tibshirani, “Discriminant Analysis by Gaussian Mixtures,” J. Royal Statistical Soc. series B, vol. 58, pp. 158176, 1996.
[21] T. Hastie, R. Tibshirani, and J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
[22] P. Howland, M. Jeon, and H. Park, “Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition,” SIAM J. Matrix Analysis and Applications, vol. 25, no. 1, pp. 165179, 2003.
[23] I.T. Jolliffe, Principal Component Analysis. New York: SpringerVerlag, 1986.
[24] K.V. Ravi Kanth, D. Agrawal, A. El Abbadi, and A. Singh, “Dimensionality Reduction for Similarity Searching in Dynamic Databases,” Computer Vision and Image Understanding: CVIU, vol. 75, nos. 12, pp. 5972, 1999.
[25] W.J. Krzanowski, P. Jonathan, W.V McCarthy, and M.R. Thomas, “Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data,” Applied Statistics, vol. 44, pp. 101115, 1995.
[26] H. Li, J. Tao, and K. Zhang, “Efficient and Robust Feature Extraction by Maximum Margin Criterion,” Advances in Neural Information Processing Systems 16, Cambridge, Mass.: MIT Press, 2004.
[27] J. Mao and K. Jain, “Artificial Neural Networks for Feature Extraction and Multivariate Data Projection,” IEEE Trans. Neural Networks, vol. 6, no. 2, pp. 296317, 1995.
[28] A. Martinez and A. Kak, “PCA versus LDA,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, pp. 228233, 2001.
[29] A.M. Martinez and R. Benavente, “The AR Face Database,” Technical Report No. 24, 1998.
[30] H. Park, M. Jeon, and J.B. Rosen, “Lower Dimensional Representation of Text Data Based on Centroids and Least Squares,” BIT Numerical Math., vol. 43, no. 2, pp. 122, 2003.
[31] R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++: An Incremental Learning Algorithm for Supervised Neural Networks,” IEEE Trans. Systems, Man, and Cybernetics, vol. 31, pp. 497508, 2001.
[32] M.F. Porter, “An Algorithm for Suffix Stripping Program,” Program, vol. 14, no. 3, pp. 130137, 1980.
[33] G. Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. AddisonWesley, 1989.
[34] D.L. Swets and J. Weng, “Using Discriminant Eigenfeatures for Image Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 831836, Aug. 1996.
[35] F.D.L. Torre and M. Black, “Robust Principal Component Analysis for Computer Vision,” Proc. Int'l Conf. Computer Vision, pp. 362369, 2001.
[36] J. Ye, R. Janardan, C.H. Park, and H. Park, “An Optimization Criterion for Generalized Discriminant Analysis on Undersampled Problems,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 982994, Aug. 2004.
[37] Y. Zhao and G. Karypis, “Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering,” Machine Learning, vol. 55, no. 3, pp. 311331, 2004.