This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Information Retrieval and Knowledge Discovery Utilizing a BioMedical Patent Semantic Web
August 2005 (vol. 17 no. 8)
pp. 1099-1110
Before undertaking new biomedical research, identifying concepts that have already been patented is essential. A traditional keyword-based search on patent databases may not be sufficient to retrieve all the relevant information, especially for the biomedical domain. This paper presents BioPatentMiner, a system that facilitates information retrieval and knowledge discovery from biomedical patents. The system first identifies biological terms and relations from the patents and then integrates the information from the patents with knowledge from biomedical ontologies to create a Semantic Web. Besides keyword search and queries linking the properties specified by one or more RDF triples, the system can discover semantic associations between the Web resources. The system also determines the importance of the resources to rank the results of a search and prevent information overload while determining the semantic associations.

[1] K. Anyanwu and A. Sheth, “$\rho{\hbox{-}}{\rm{Queries}}$ : Enabling Querying for Semantic Associations on the Semantic Web,” Proc. 12th Int'l World-Wide Web Conf., May 2003.
[2] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” Computer Networks and ISDN Systems, Special Issue on the Seventh Int'l World-Wide Web Conf., vol. 30, nos. 1-7, pp. 107-117, Apr. 1998.
[3] D. Carmel, E. Amitay, M. Hersovici, Y. Maarek, Y. Petruschka, and A. Soffer, “Juru at TREC-10: Experiments with Index Pruning,” Proc. 10th Text Retrieval Conf., pp. 228-237, 2001.
[4] J. Chen, L. Wong, and L. Zhang, “A Protein Patent Query System Powered by Klesili,” Proc. ACM SIGMOD Conf., 1998.
[5] JENA, http://www.hpl.hp.com/semwebjena2.htm, 2005.
[6] N. Kando and M. Leong, “Workshop Patent Retrieval: SIGIR 2000 Workshop Report,” ACM SIGIR Forum, vol. 34, no. 1, pp. 28-30, Apr. 2000.
[7] P. Kankar, S. Adak, A. Sarkar, K. Murari, and G. Sharma, “MedMeSH Summarizer: Text Mining for Gene Clusters,” Proc. Second SIAM Int'l Conf. Data Mining, 2002.
[8] S. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl, “RQL: A Declarative Query Language for RDF,” Proc. 11th Int'l World-Wide Web Conf., May 2002.
[9] J. Kleinberg, “Authorative Sources in a Hyperlinked Environment,” Proc. Ninth ACM-SIAM Symp. Discrete Algorithms, May 1998.
[10] L. Larkey, “A Patent Search and Classification System,” Proc. ACM Digital Library Conf., 1999.
[11] R. Lempel and S. Moran, “The Stochastic Approach for Link-Structure Analysis (SALSA) and the TKC Effect,” Proc. Ninth Int'l World-Wide Web Conf., pp. 387-401, May 2000.
[12] M. Marinescu, M. Markellou, G. Mayritsakis, K. Perdikuri, S. Sirmakessis, and A. Tsakalidis, “Knowledge Discovery in Patent Databases,” Proc. ACM Conf. Information and Knowledge Management, 2002.
[13] M. Osborn, T. Strzalknowski, and M. Marinescu, “Evaluating Document Retrieval in Patent Database: A Preliminary Report,” Proc. ACM Conf. Information and Knowledge Management, 1997.
[14] J. Park, H. Kim, and J. Kim, “Bidirectional Incremental Parsing for Automatic Pathway Identification with Combinatory Categorial Grammar,” Proc. Pacific Symp. Biocomputing, pp. 396-407, 2001.
[15] J. Pustejovski, J. Castano, J. Zhang, M. Kotecki, and B. Cochran, “Robust Relational Parsing over Biomedical Literature: Extracting Inhibit Relations,” Proc. Pacific Symp. Biocomputing, 2002.
[16] Resource Description Format, http://www.w3.org/1999/0222-rdf-syntax-ns , 2005.
[17] Resource Description Format Schema, http://www.w3.org/2000/01rdf-schema, 2005.
[18] A. Seaborne, “RDQL: A Data Oriented Query Language for RDF Models,” http://www.hpl.hp.com/semwebrdql-grammar.html , 2005.
[19] L. Subramaniam, S. Mukherjea, P. Kankar, B. Srivastava, V. Batra, P. Kamesam, and R. Kothari, “Information Extraction from Biomedical Literature: Methodology, Evaluation and an Application,” Proc. ACM Conf. Information and Knowledge Management, 2003.
[20] TAP, http:/tap.stanford.edu, 2005.
[21] R. Tarjan, “Fast Algorithms for Solving Path Problems,” J. ACM, vol. 28, no. 3, July 1991.
[22] UMLS, http:/umlsks.nlm.nih.gov, 2005.
[23] United States Patent and Trademark Office, http://www.uspto govpatft/, 2005.
[24] L. Wong, “PIES: A Protein Interaction Extraction System,” Proc. Pacific Symp. Biocomputing, pp. 520-531, 2001.

Index Terms:
Index Terms- Biomedical information retrieval, Semantic Web, information extraction.
Citation:
Sougata Mukherjea, Bhuvan Bamba, Pankaj Kankar, "Information Retrieval and Knowledge Discovery Utilizing a BioMedical Patent Semantic Web," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 8, pp. 1099-1110, Aug. 2005, doi:10.1109/TKDE.2005.130
Usage of this product signifies your acceptance of the Terms of Use.