
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
ChengRu Lin, KenHao Liu, MingSyan Chen, "Dual Clustering: Integrating Data Clustering over Optimization and Constraint Domains," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 5, pp. 628637, May, 2005.  
BibTex  x  
@article{ 10.1109/TKDE.2005.75, author = {ChengRu Lin and KenHao Liu and MingSyan Chen}, title = {Dual Clustering: Integrating Data Clustering over Optimization and Constraint Domains}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {17}, number = {5}, issn = {10414347}, year = {2005}, pages = {628637}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.75}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Dual Clustering: Integrating Data Clustering over Optimization and Constraint Domains IS  5 SN  10414347 SP628 EP637 EPD  628637 A1  ChengRu Lin, A1  KenHao Liu, A1  MingSyan Chen, PY  2005 KW  Data mining KW  data clustering KW  dual clustering. VL  17 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] A. BenHur, D. Horn, H.T. Siegelmann, and V. Vapnik, “Support Vector Clustering,” J. Machine Learning Research, vol. 2, pp. 125137, 2001.
[2] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981.
[3] P.S. Bradley, K.P. Bennett, and A. Demiriz, “Constrained KMeans Clustering,” Technical Report MSRTR200065, Microsoft Research, May 2000.
[4] A.G. Buchner and M. Mulvenna, “Discovery Internet Marketing Intelligence through Online Analytical Web Usage Mining,” ACM SIGMOD Record, vol. 27, no. 4, pp. 5461, Dec. 1998.
[5] C.C. Chang, C.W. Hsu, and C.J. Lin, “The Analysis of Decomposition Methods for Support Vector Machines,” IEEE Trans. Neural Networks, pp. 10031008, 2000.
[6] M.S. Chen, J. Han, and P.S. Yu, “Data Mining: An Overview from Database Perspective,” IEEE Trans. Knowledge and Data Eng., vol. 5, no. 1, pp. 866883, Dec. 1996.
[7] B.R. Dai, C.R. Lin, and M.S. Chen, “On the Techniques for Data Clustering with Numerical Constraints,” Proc. SIAM Int'l Conf. Data Mining (SDM '03), 2003.
[8] R.C. Dubes, “How Many Clusters Are Best?— An Experiment,” Pattern Recognition, vol. 20, no. 6, pp. 645663, 1987.
[9] V. EstivillCastro and I. Lee, “Autoclust+: Automatic Clustering of PointData Sets in the Presence of Obstacles,” Proc. Int'l Workshop on Temporal, Spatial and SpatioTemporal Data Mining (TSDM '00), pp. 133146, 2000.
[10] U.M. Fayyad, G. PiatetskyShapiro, P. Smyth, and R. Uthurasamy, Advances in Knowledge Discovery and Data Mining. Cambridge, Mass: MIT Press, 1996.
[11] T. Gaertner, J.W. Lloyd, and P.A. Flach, “Kernels for Structured Data,” Proc. Int'l Conf. Inductive Logic Programming (ILP '02), July 2002.
[12] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
[13] J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural Computation. Reading, Mass.: AddisonWesley, 1991.
[14] C.W. Hsu and C.J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines,” IEEE Trans. Neural Networks, pp. 415425, 2002.
[15] D. Hush and C. Scovel, “PolynomialTime Decomposition Algorithms for Support Vector Machines,” Machine Learning, pp. 5171, 2003.
[16] B. King, “StepWise Clustering Procedures,” J. Am. Statistical Assoc., vol. 69, pp. 86101, 1967.
[17] C.R. Lin and M.S. Chen, “On the Optimal Clustering of Sequential Data,” Proc. Second SIAM Int'l Conf. Data Mining, Apr. 2002.
[18] C.R. Lin and M.S. Chen, “A Robust and Efficient Clustering Algorithm Based on Cohesion SelfMerging,” Proc. Eighth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, Aug. 2002.
[19] S.Y. Lu and K.S. Fu, “A SentencetoSentence Clustering Procedure for Pattern Analysis,” IEEE Trans. Systems, Man, and Cybernetics, vol. 8, pp. 381389, 1978.
[20] J. McQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. Fifth Berkeley Symp. Math. Statistics and Probability, 1967.
[21] K. Rose, E. Gurewitz, and G. Fox, “Deterministic Annealing, Constrained Clustering, and Optimization,” Proc. IEEE Int'l Joint Conf. Neural Networks, pp. 25152520, 1991.
[22] K. Rose, E. Gurewitz, and G. Fox, “Constrained Clustering as an Optimization Method,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 8, pp. 785794, Aug. 1993.
[23] P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy. London: Freeman, 1973.
[24] A.K.H. Tung, J. Han, L.V.S. Lakshmanan, and R.T. Ng, “ConstraintBased Clustering in Large Databases,” Proc. 2001 Int'l Conf. Database Theory, Jan. 2001.
[25] A.K.H. Tung, J. Hou, and J. Han, “Spatial Clustering in the Presence of Obstacles,” Proc. Int'l Conf. Data Eng. (ICDE), 2001.
[26] V. Vapnik, The Nature of Statistical Learning Theory. Springer Verlag, 1995.
[27] V. Vapnik, Statistical Learning Theory. Wiley, 1998.
[28] C. Yu, B.C. Ooi, K.L. Tan, and H.V. Jagadish, “Indexing the Distance: An Efficient Method to KNN Processing,” The VLDB J., pp. 421430, 2001.
[29] O.R. Zaiane, A. Foss, C.H. Lee, and W. Wang, “On Data Clustering Analysis: Scalability, Constraints, and Validation,” Proc. PacificAsia Conf. Knowledge Discovery and Data Mining (PAKDD '02), pp. 2839, 2002.