
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Domenico Cantone, Alfredo Ferro, Alfredo Pulvirenti, Diego Reforgiato Recupero, Dennis Shasha, "Antipole Tree Indexing to Support Range Search and KNearest Neighbor Search in Metric Spaces," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 4, pp. 535550, April, 2005.  
BibTex  x  
@article{ 10.1109/TKDE.2005.53, author = {Domenico Cantone and Alfredo Ferro and Alfredo Pulvirenti and Diego Reforgiato Recupero and Dennis Shasha}, title = {Antipole Tree Indexing to Support Range Search and KNearest Neighbor Search in Metric Spaces}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {17}, number = {4}, issn = {10414347}, year = {2005}, pages = {535550}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.53}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Antipole Tree Indexing to Support Range Search and KNearest Neighbor Search in Metric Spaces IS  4 SN  10414347 SP535 EP550 EPD  535550 A1  Domenico Cantone, A1  Alfredo Ferro, A1  Alfredo Pulvirenti, A1  Diego Reforgiato Recupero, A1  Dennis Shasha, PY  2005 KW  Indexing methods KW  similarity measures KW  information search and retrieval. VL  17 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] P. Agarwal, J. Matousek, and S. Suri, “Farthest Neighbors, Maximum Spanning Trees, and Related Problems in Higher Dimensions,” Computational Geometry: Theory and Applications, vol. 1, pp. 189201, 1991.
[2] C. Aggarwal, J.L. Wolf, P.S. Yu, and M. Epelman, “Using Unbalanced Trees for Indexing Multidimensional Objects,” Knowledge and Information Systems, vol. 1, no. 3, pp. 157192, 1999.
[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications,” Proc. ACM SIGMOD, pp. 94105, 1998.
[4] R. BaezaYates, W. Cunto, U. Manber, and S. Wu, “Proximity Matching Using FixedQueries Trees,” Proc. Combinatorial Pattern Matching, Fifth Ann. Symp., pp. 198212, 1994.
[5] G. Barequet and S. HarPeled, “Efficiently Approximating the MinimumVolume Bounding Box of a Point Set in Three Dimensions,” Proc. 10th Ann. ACMSIAM Symp. Discrete Algorithms, pp. 8291, 1999.
[6] S. Battiato, D. Cantone, D. Catalano, G. Cincotti, and M. Hofri, “An Efficient Algorithm for the Approximate Median Selection Problem,” Proc. Fourth Italian Conf. Algorithms and Complexity, pp. 226238, 2000.
[7] S. Berchtold, D.A. Keim, and H.P. Kriegel, “The XTree: An Index Structure for HighDimensional Data,” Proc. 22nd Int'l Conf. Very Large Databases, pp. 2839, 1996.
[8] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is Nearest Neighbor Meaningful?” Proc. Seventh Int'l Conf. Database Theory, vol. 1540, pp. 217235, 1999.
[9] T. Bozkaya and M. Ozsoyoglu, “Indexing Large Metric Spaces for Similarity Search Queries,” ACM Trans. Database Systems, vol. 24, no. 3, pp. 361404, 1999.
[10] S. Brin, “Near Neighbor Search in Large Metric Spaces,” Proc. 21st Int'l Conf. Very Large Data Bases, pp. 574584, 1995.
[11] W.A. Burkhard and R.M. Keller, “Some Approaches to BestMatch File Searching,” Comm. ACM, vol. 16, no. 4, pp. 230236, 1973.
[12] B. Bustos and G. Navarro, “Probabilistic Proximity Searching Algorithms Based on Compact Partitions,” Proc. Symp. String Processing and Information Retrieval, pp. 284297, 2002.
[13] I. Calantari and G. McDonald, “A Data Structure and an Algorithm for the Nearest Point Problem,” IEEE Trans. Software Eng., vol. 9, no. 5, pp. 631634, 1983.
[14] D. Cantone, G. Cincotti, A. Ferro, and A. Pulvirenti, “An Efficient Algorithm for the 1Median Problem,” SIAM J. Optimization, to appear.
[15] T.M. Chan, “Approximating the Diameter, Width, Smallest Enclosing Cylinder, and MinimumWidth Annulus,” Int'l J. Computational Geometry and Applications, vol. 12, nos. 12, pp. 6785, 2002.
[16] E. Chávez and G. Navarro, “An Effective Clustering Algorithm to Index High Dimensional Metric Spaces,” Proc. 11th Ann. ACMSIAM Symp. Discrete Algorithms, pp. 7586, 2000.
[17] E. Chávez and G. Navarro, “A Probabilistic Spell for the Curse of Dimensionality,” Proc. Third Workshop Algorithm Eng. and Experimentation (ALENEX '01), pp. 147160, 2001.
[18] E. Chávez, G. Navarro, R. BaezaYates, and J. Marroquin, “Searching in Metric Spaces,” ACM Computing Surveys, vol. 33, no. 3, pp. 273321, 2001.
[19] B. Chazelle, “Computational Geometry: A Retrospective,” Proc. 26th Ann. ACM Symp. Theory of Computing, pp. 7594, May 1994.
[20] P. Ciaccia and M. Patella, “Bulk Loading the MTree,” Proc. Ninth Australasian Database Conf. (ADC), pp. 1526, 1998.
[21] P. Ciaccia and M. Patella, “PAC Nearest Neighbor Queries: Approximate and Controlled Search in HighDimensional and Metric Spaces,” Proc. 16th Int'l Conf. Data Eng.,, pp. 244255, 2000.
[22] P. Ciaccia, M. Patella, and P. Zezula, “MTree: An Efficient Access Method for Similarity Search in Metric Spaces,” Proc. 23rd Int'l Conf. Very Large Data Bases, pp. 426435, 1997.
[23] K. Clarkson, “Nearest Neighbor Queries in Metric Spaces,” Proc. 29th Ann. ACM Symp. Theory of Computing, pp. 609617, May 1997.
[24] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, “A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proc. Second Int'l Conf. Knowledge Discovery in Databases and Data Mining, pp. 226231, 1996.
[25] T. Feder and D. Greene, “Optimal Algorithms for Approximate Clustering,” Proc. 20th Ann. ACM Symp. Theory of Computing, pp. 434444, 1988.
[26] A.W.C. Fu, P.M. Chan, Y.L. Cheung, and Y. Moon, “Dynamic VPTree Indexing for nNearest Neighbor Search Given PairWise Distances,” The VLDB J., vol. 9, no. 2, pp. 154173, 2000.
[27] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French, “Clustering Large Datasets in Arbitrary Metric Spaces,” Proc. IEEE 15th Int'l Conf. Data Eng., pp. 502511, 1999.
[28] A. Gersho and R. Gray, Vector Quantization and Signal Compression. Kluwer Academic, 1992.
[29] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing,” Proc. 25th Int'l Conf. Very Large Data Bases, pp. 518529, 1999.
[30] T. Gonzalez, “Clustering to Minimize the Maximum Intercluster Distance,” Theoretical Computer Science, vol. 38, pp. 293306, 1985.
[31] T. Gonzalez, “Covering a Set of Points in Multidimensional Space,” Information Processing Letters, vol. 40, pp. 181188, 1991.
[32] S. Guha, R. Rastogi, and K. Shim, “Cure: An Efficient Clustering Algorithm for Large Databases,” Proc. ACM SIGMOD, pp. 7384, 1998.
[33] S. HarPeled, “A Practical Approach for Computing the Diameter of a Point Set,” Proc. 17th Symp. Computational Geometry, pp. 177186, 2001.
[34] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial Database,” ACM Trans. Information Systems, vol. 24, no. 2, pp. 265318, 1999.
[35] D.S. Hochbaum and W. Maass, “Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI,” J. ACM, vol. 32, no. 1, pp. 130136, 1985.
[36] P. Indyk, “Sublinear Time Algorithms for Metric Space Problems,” Proc. 31st Ann. ACM Symp. Theory of Computing, pp. 428434, 1999.
[37] P. Indyk and R. Motwani, “Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality,” Proc. 30th Ann. ACM Symp. Theory of Computing, pp. 604613, 1998.
[38] C. Li, E. Chang, and H.G.M.G. Wiederhold, “Clustering for Approximate Similarity Search in HighDimensional Spaces,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 4, pp. 792808, JulyAug. 2002.
[39] T.M. Mitchell, Machine Learning. McGrawHill, 1997.
[40] G. Navarro, “Searching in Metric Spaces by Spatial Approximation,” The VLDB J., vol. 11, pp. 2846, 2002.
[41] R. Ng and J. Han, “Clarans: A Method for Clustering Objects for Spatial Data Mining,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 5, pp. 10031016, Sept./Oct. 2002.
[42] H. Noltemeier, K. Verbarg, and C. Zirkelbach, “Monotonous Bisector* Trees— A Tool for Efficient Partitioning of Complex Scenes of Geometric Objects,” Data Structure and Efficient Algorithms, Lecture Notes in Computer Sciences, vol. 594, pp. 186203, SpringerVerlag, 1992.
[43] C. Procopiuc, “Geometric Techniques for Clustering Theory and Practice,” PhD dissertation, Duke Univ., 2001.
[44] M. Shapiro, “The Choice of Reference Points in BestMatch File Searching,” Comm. ACM, vol. 20, no. 5, pp. 339343, 1997.
[45] D. Shasha and T.L. Wang, “New Techniques for BestMatch Retrieval,” ACM Trans. Information Systems, vol. 8, no. 2, pp. 140158, 1990.
[46] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A Wavelet Based Clustering Approach for Spatial Data in Very Large Databases,” The VLDB J., vol. 8, nos. 34, pp. 289304, 2000.
[47] S. Sumanasekara and M. Ramakrishna, “CHILMA: An Efficient High Dimensional Indexing Structure for Image Databases,” Proc. First IEEE PacificRim Conf. Multimedia, pp. 7679, 2000.
[48] C. TrainaJr., A. Traina, B. Seeger, and C. Faloutsos, “SlimTrees: High Performance Metric Trees Minimizing Overlap between Nodes,” Proc. Seventh Int'l Conf. Extending Database Technology, vol. 1777, pp. 5165, 2000.
[49] J. Uhlmann, “Satisfying General Proximity/Similarity Queries with Metric Trees,” Information Processing Letters, vol. 40, pp. 175179, 1991.
[50] VisTex, http://graphics.stanford. edu/projects/texture/ demosynthesis_VisTex_192.html, Texture Synthesis: VisTex Texture, 2004.
[51] L. Wei and M. Levoy, “Texture Synthesis over Arbitrary Manifold Surfaces,” Proc. ACMSIGGRAPH '01, pp. 355360, 2001.
[52] P. Yianilos, “Data Structures and Algorithms for Nearest Neighbor Search in General Metric Saces,” Proc. Third Ann. ACMSIAM Symp. Discrete Algorithms, pp. 311321, Jan. 1993.
[53] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proc. ACM SIGMOD Conf. Management of Data, pp. 103114, 1996.