
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Mehmet Koyut?, Ananth Grama, Naren Ramakrishnan, "Compression, Clustering, and Pattern Discovery in Very HighDimensional DiscreteAttribute Data Sets," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 4, pp. 447461, April, 2005.  
BibTex  x  
@article{ 10.1109/TKDE.2005.55, author = {Mehmet Koyut? and Ananth Grama and Naren Ramakrishnan}, title = {Compression, Clustering, and Pattern Discovery in Very HighDimensional DiscreteAttribute Data Sets}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {17}, number = {4}, issn = {10414347}, year = {2005}, pages = {447461}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.55}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Compression, Clustering, and Pattern Discovery in Very HighDimensional DiscreteAttribute Data Sets IS  4 SN  10414347 SP447 EP461 EPD  447461 A1  Mehmet Koyut?, A1  Ananth Grama, A1  Naren Ramakrishnan, PY  2005 KW  Clustering KW  classification KW  association rules KW  data mining KW  sparse KW  structured and very large systems KW  singular value decomposition. VL  17 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th Int'l Conf. Very Large Data Bases (VLDB '94), pp. 487499, 1994.
[2] G.H. John and P. Langley, “Static versus Dynamic Sampling for Data Mining,” Proc. Second Int'l Conf. Knowledge Discovery and Data Mining (KDD '96), pp. 367370, 1996.
[3] F.J. Provost, D. Jensen, and T. Oates, “Efficient Progressive Sampling,” Knowledge Discovery and Data Mining, pp. 2332, 1999.
[4] F.J. Provost and V. Kolluri, “A Survey of Methods for Scaling Up Inductive Algorithms,” Data Mining and Knowledge Discovery, vol. 3, no. 2, pp. 131169, 1999.
[5] H. Toivonen, “Sampling Large Databases for Association Rules,” Proc. 22th Int'l Conf. Very Large Databases (VLDB '96), pp. 134145, 1996.
[6] M.J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara, “Evaluation of Sampling for Data Mining of Association Rules,” Proc. Seventh Int'l Workshop Research Issues Data Eng. (RIDE '97), p. 42, 1997.
[7] M.W. Berry, S.T. Dumais, and G.W. O'Brien, “Using Linear Algebra for Intelligent Information Retrieval,” SIAM Rev., vol. 37, no. 4, pp. 573595, 1995.
[8] T.G. Kolda and D.P. O'Leary, “Computation and Uses of the Semidiscrete Matrix Decomposition,” ACM Trans. Information Processing, 1999.
[9] M.T. Chu and R.E. Funderlic, “The Centroid Decomposition: Relationships between Discrete Variational Decompositions and SVDs,” SIAM J. Matrix Analysis and Applications, vol. 23, no. 4, pp. 10251044, 2002.
[10] D. Boley, “Principal Direction Divisive Partitioning,” Data Mining and Knowledge Discovery, vol. 2, no. 4, pp. 325344, 1998.
[11] I.T Joliffe, Principal Component Analysis. SpringerVerlag, 1986.
[12] H.H. Harman, Modern Factor Analysis. Univ. of Chicago Press, 1967.
[13] T. Hofmann, “Probabilistic Latent Semantic Analysis,” Proc. 15th Conf. Uncertainty in Artificial Intelligence (UAI '99), 1999.
[14] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” J. Royal Statistical Soc. Series B (Methodological), vol. 39, no. 1, pp. 138, 1977.
[15] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. John Wiley & Sons, 2001.
[16] R.M. Gray, “Vector Quantization,” IEEE ASSP Magazine, vol. 1, no. 2, pp. 429, 1984.
[17] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. Fifth Berkeley Symp., vol. 1, pp. 281297, 1967.
[18] Z. Huang, “A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining,” Proc. SIGMOD Workshop Research Issues Data Mining and Knowledge Discovery, 1997.
[19] D. Gibson, J. Kleingberg, and P. Raghavan, “Clustering Categorical Data: An Approach Based on Dynamical Systems,” The VLDB J., vol. 8, nos. 34, pp. 222236, 2000.
[20] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering Algorithm for Categorical Attributes,” Information Systems, vol. 25, no. 5, pp. 345366, 2000.
[21] E.H. Han, G. Karypis, V. Kumar, and B. Mobasher, “HypergraphBased Clustering in HighDimensional Data Sets: A Summary of Results,” Bull. IEE Technical Comm. Data Eng., vol. 21, no. 1, pp. 1522, 1998.
[22] M. Özdal and C. Aykanat, “Hypergraph Models and Algorithms for DataPattern Based Clustering,” Data Mining and Knowledge Discovery, vol. 9, no. 1, pp. 2957, 2004.
[23] M. Koyutürk, A. Grama, and N. Ramakrishnan, “Algebraic Techniques for Analysis of Large DiscreteValued Data Sets,” Proc. Sixth European Conf. Principles of Data Mining and Knowledge Discovery (PKDD '02), pp. 311324, 2002.
[24] C. Bron and J. Kerbosch, “Finding All Cliques in an Undirected Graph,” Comm. ACM, vol. 16, pp. 575577, 1973.
[25] R. Peeters, “The Maximum Edge Biclique Problem is NPComplete,” Discrete Applied Math., vol. 131, no. 3, pp. 651654, 2003.
[26] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,” SIAM J. Scientific Computing, vol. 20, no. 1, pp. 359392, 1998.
[27] J. Chi, M. Koyutürk, and A. Grama, “Conquest: A Distributed Tool for Constructing Summaries of HighDimensional DiscreteAttributed Data Sets,” Proc. Fourth SIAM Int'l Conf. Data Mining (SDM '04), pp. 154165, 2004.
[28] C. Borgelt and R. Kruse, “Induction of Association Rules: Apriori Implementation,” Proc. 15th Conf. Computational Statistics, 2002.
[29] M. Koyutürk and A. Grama, “Proximus: A Framework for Analyzing Very High Dimensional DiscreteAttributed Data Sets,” Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '03), pp. 147156, 2003.