The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (2005 vol.17)
pp: 369-383
ABSTRACT
Recent research suggests that clustering for high-dimensional data should involve searching for "hidden” subspaces with lower dimensionalities, in which patterns can be observed when data objects are projected onto the subspaces. Discovering such interattribute correlations and location of the corresponding clusters is known as the projective clustering problem. In this paper, we propose an efficient projective clustering technique by histogram construction (EPCH). The histograms help to generate "signatures,” where a signature corresponds to some region in some subspace, and signatures with a large number of data objects are identified as the regions for subspace clusters. Hence, projected clusters and their corresponding subspaces can be uncovered. Compared to the best previous methods to our knowledge, this approach is more flexible in that less prior knowledge on the data set is required, and it is also much more efficient. Our experiments compare behaviors and performances of this approach and other projective clustering algorithms with different data characteristics. The results show that our technique is scalable to very large databases, and it is able to return accurate clustering results.
INDEX TERMS
Projective clustering, histogram, subspace.
CITATION
Eric Ka Ka Ng, Raymond Chi-Wing Wong, "Projective Clustering by Histograms", IEEE Transactions on Knowledge & Data Engineering, vol.17, no. 3, pp. 369-383, March 2005, doi:10.1109/TKDE.2005.47
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool