The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (2005 vol.17)
pp: 299-310
ABSTRACT
The area under the ROC (Receiver Operating Characteristics) curve, or simply AUC, has been traditionally used in medical diagnosis since the 1970s. It has recently been proposed as an alternative single-number measure for evaluating the predictive ability of learning algorithms. However, no formal arguments were given as to why AUC should be preferred over accuracy. In this paper, we establish formal criteria for comparing two different measures for learning algorithms and we show theoretically and empirically that AUC is a better measure (defined precisely) than accuracy. We then reevaluate well-established claims in machine learning based on accuracy using AUC and obtain interesting and surprising new results. For example, it has been well-established and accepted that Naive Bayes and decision trees are very similar in predictive accuracy. We show, however, that Naive Bayes is significantly better than decision trees in AUC. The conclusions drawn in this paper may make a significant impact on machine learning and data mining applications.
INDEX TERMS
Evaluation of learning algorithms, ROC, AUC of ROC, accuracy.
CITATION
Jin Huang, Charles X. Ling, "Using AUC and Accuracy in Evaluating Learning Algorithms", IEEE Transactions on Knowledge & Data Engineering, vol.17, no. 3, pp. 299-310, March 2005, doi:10.1109/TKDE.2005.50
9 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool