
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Li Yang, "Pruning and Visualizing Generalized Association Rules in Parallel Coordinates," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 1, pp. 6070, January, 2005.  
BibTex  x  
@article{ 10.1109/TKDE.2005.14, author = {Li Yang}, title = {Pruning and Visualizing Generalized Association Rules in Parallel Coordinates}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {17}, number = {1}, issn = {10414347}, year = {2005}, pages = {6070}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.14}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Pruning and Visualizing Generalized Association Rules in Parallel Coordinates IS  1 SN  10414347 SP60 EP70 EPD  6070 A1  Li Yang, PY  2005 KW  Association rules KW  data visualization KW  data mining KW  interactive data exploration KW  mining methods and algorithms. VL  17 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] C.C. Aggarwal and P.S. Yu, “A New Approach to Online Generation of Association Rules,” IEEE Trans. Knowledge and Data Eng., vol. 13, no. 4, pp. 527540, July/Aug. 2001.
[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '93), pp. 207216, May 1993.
[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th Int'l Conf. Very Large Data Bases (VLDB '94), pp. 207216, Sept. 1994.
[4] K.M. Ahmed, N.M. ElMakky, and Y. Taha, “A Note on Beyond Market Baskets: Generalizing Association Rules to Correlations,” ACM SIGKDD Explorations Newsletter, vol. 1, no. 2, pp. 4648, Jan. 2000.
[5] R.J. Bayardo, “Efficiently Mining Long Patterns from Databases,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '98), pp. 8593, June 1998.
[6] R.J. Bayardo and R. Agrawal, “Mining the Most Interesting Rules,” Proc. Fifth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '99), pp. 145154, Aug. 1999.
[7] S. Brin, R. Motwani, and C. Silverstein, “Beyond Market Baskets: Generalizing Association Rules to Correlations,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '97), pp. 265276, May 1997.
[8] G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. New York: Academic Press, 1988.
[9] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Data Mining Using TwoDimensional Optimized Association Rules: Scheme, Algorithms, and Visualization,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '96), pp. 1323, June 1996.
[10] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen, “Data Mining, Hypergraph Transversals, and Machine Learning,” Proc. 16th ACM Symp. Principles of Database Systems (PODS '97), pp. 209216, May 1997.
[11] B. Hetzler, W.M. Harris, S. Havre, and P. Whitney, “Visualizing the Full Spectrum of Document Relationships,” Structures and Relations in Knowledge Organization, Proc. Fifth Int'l Soc. for Knowledge Organization (ISKO) Conf., pp. 168175, 1998.
[12] H. Hofmann, A. Siebes, and A. Wilhelm, “Visualizing Association Rules with Interactive Mosaic Plots,” Proc. Sixth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '00), pp. 227235, Aug. 2000.
[13] A. Inselberg, “The Plane with Parallel Coordinates,” The Visual Computer, vol. 1, no. 2, pp. 6991, 1985.
[14] A. Inselberg, “Parallel Coordinates: A Tool for Visualizing MultiDimensional Geometry,” Proc. First IEEE Conf. Visualization, pp. 361375, Oct. 1990.
[15] A. Inselberg, “Visualizing High Dimensional Datasets and Multivariate Relations (Tutorial),” Proc. Sixth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '00), Aug. 2000.
[16] A. Inselberg and B. Dimsdale, “MultiDimensional Lines,” SIAM J. Applied Math., vol. 54, no. 2, pp. 559596, 1994.
[17] A. Inselberg, M. Reif, and T. Chomut, “Convexity Algorithms in Parallel Coordinates,” J. ACM, vol. 34, no. 4, pp. 765801, Oct. 1987.
[18] S. Jaroszewicz and D.A. Simovici, “Pruning Redundant Association Rules Using Maximum Entropy Principle,” Proc. Sixth PacificAsia Conf. Knowledge Discovery and Data Mining (PAKDD '02), pp. 135147, May 2002.
[19] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and I. Verkamo, “Finding Interesting Rules from Large Sets of Discovered Association Rules,” Proc. Third ACM Int'l Conf. Information and Knowledge Management (CIKM '94), pp. 401407, Nov. 1994.
[20] B. Liu, W. Hsu, S. Chen, and Y. Ma, “Analyzing the Subjective Interestingness of Association Rules,” IEEE Intelligent Systems, vol. 15, no. 5, pp. 4755, Sept./Oct. 2000.
[21] B. Liu, W. Hsu, and Y. Ma, “Pruning and Summarizing the Discovered Associations,” Proc. Fifth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '99), pp. 145154, Aug. 1999.
[22] B. Liu, W. Hsu, K. Wang, and S. Chen, “Visually Aided Exploration of Interesting Association Rules,” Proc. Third PacificAsia Conf. Knowledge Discovery and Data Mining (PAKDD), pp. 380389, Apr. 1999.
[23] H. Mannila and C. Meek, “Global Partial Orders from Sequential Data,” Proc. Sixth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '00), pp. 161168, Aug. 2000.
[24] H. Mannila and H. Toivonen, “Multiple Uses of Frequent Sets and Condensed Representations,” Proc. Second Int'l Conf. Knowledge Discovery and Data Mining (KDD '96), pp. 189194, Aug. 1996.
[25] A. Martin and M.O. Ward, “High Dimensional Brushing for Interactive Exploration of Multivariate Data,” Proc. IEEE Conf. Visualization, pp. 271278, Oct. 1995.
[26] B. Padmanabhan and A. Tuzhilin, “Small Is Beautiful: Discovering the Minimal Set of Unexpected Patterns,” Proc. Sixth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '00), pp. 5463, Aug. 2000.
[27] C. Silverstein, S. Brin, and R. Motwani, “Beyond Market Baskets: Generalizing Association Rules to Dependence Rules,” Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 3968, Jan. 1998.
[28] R. Srikant and R. Agrawal, “Mining Generalized Association Rules,” Proc. 21st Int'l Conf. Very Large Data Bases (VLDB '95), pp. 407419, Sept. 1995.
[29] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila, “Pruning and Grouping of Discovered Association Rules,” Proc. ECML95 Workshop Statistics, Machine Learning, and Knowledge Discovery in Databases, pp. 4752, Apr. 1995.
[30] A. Tuzhilin and G. Adomavicius, “Handling Very Large Numbers of Association Rules in the Analysis of Microarray Data,” Proc. Eighth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '02), pp. 396404, July 2002.
[31] A. Tuzhilin and B. Liu, “Querying Multiple Sets of Discovered Rules,” Proc. Eighth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '02), pp. 5260, July 2002.
[32] P.C. Wong, P. Whitney, and J. Thomas, “Visualizing Association Rules for Text Mining,” Proc. IEEE Symp. Information Visualization (InfoVis '99), pp. 120123, Oct. 1999.
[33] K. Yoda, T. Fukuda, Y. Morimoto, T. Morishita, and T. Tokuyama, “Computing Optimized Rectilinear Regions for Association Rules,” Proc. Third Int'l Conf. Knowledge Discovery and Data Mining (KDD '97), pp. 96103, Aug. 1997.