The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (2004 vol.16)
pp: 1169-1184
ABSTRACT
Existing models for nearest neighbor search in multidimensional spaces are not appropriate for query optimization because they either lead to erroneous estimation or involve complex equations that are expensive to evaluate in real-time. This paper proposes an alternative method that captures the performance of nearest neighbor queries using approximation. For uniform data, our model involves closed formulae that are very efficient to compute and accurate for up to 10 dimensions. Further, the proposed equations can be applied on nonuniform data with the aid of histograms. We demonstrate the effectiveness of the model by using it to solve several optimization problems related to nearest neighbor search.
INDEX TERMS
Information storage and retrieval, selection process.
CITATION
Yufei Tao, Jun Zhang, Dimitris Papadias, Nikos Mamoulis, "An Efficient Cost Model for Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces", IEEE Transactions on Knowledge & Data Engineering, vol.16, no. 10, pp. 1169-1184, October 2004, doi:10.1109/TKDE.2004.48
23 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool