
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Quanzhong Li, In?s Fernando Vega L?pez, Bongki Moon, "Skyline Index for Time Series Data," IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 6, pp. 669684, June, 2004.  
BibTex  x  
@article{ 10.1109/TKDE.2004.14, author = {Quanzhong Li and In?s Fernando Vega L?pez and Bongki Moon}, title = {Skyline Index for Time Series Data}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {16}, number = {6}, issn = {10414347}, year = {2004}, pages = {669684}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2004.14}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Skyline Index for Time Series Data IS  6 SN  10414347 SP669 EP684 EPD  669684 A1  Quanzhong Li, A1  In?s Fernando Vega L?pez, A1  Bongki Moon, PY  2004 KW  Data approximation KW  dimensionality reduction KW  similarity search KW  skyline bounding region KW  skyline index KW  time series data. VL  16 JA  IEEE Transactions on Knowledge and Data Engineering ER   
Abstract—We have developed a new indexing strategy that helps overcome the curse of dimensionality for time series data. Our proposed approach, called
[1] R. Agrawal, C. Faloutsos, and A. Swami, Efficient Similarity Search in Sequence Databases Proc. Int'l Conf. Foundations of Data Organizations and Algorithms, pp. 6984, Oct. 1993.
[2] R. Agrawal, K.I. Lin, H.S. Sawhney, and K. Shim, Fast Similarity Search in the Presence of Noise, Scaling, and Translation in TimeSeries Databases Proc. 21st Very Large Databases (VLDB) Conf., pp. 490501, Sept. 1995.
[3] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, The$R^*$Tree: An Efficient and Robust Access Method for Points and Rectangles Proc. 1990 ACMSIGMOD Conf., pp. 322331, May 1990.
[4] D. Berndt and J. Clifford, Using Dynamic Time Warping to Find Patterns in Time Series Proc. Knowledge Discovery in Databases Workshop, pp. 359370, July 1994.
[5] K. Chakrabarti and S. Mehrotra, The Hybrid Tree: An Index Structure for HighDimensional Feature Spaces Proc. Int'l Conf. Data Eng., pp. 440447, 1999.
[6] K.P. Chan and A. Fu, “Efficient Time Series Matching by Wavelets,” Proc. Int'l Conf. Data Eng., 1999.
[7] P. Ciaccia, M. Patella, and P. Zezula, MTree: An Efficient Access Method for Similarity Search in Metric Spaces Proc. 23rd Very Large Databases (VLDB) Conf., pp. 426435, Aug. 1997.
[8] C. Faloutsos, Searching Multimedia Databases Content. Boston: Kluwer Academic, 1996.
[9] C. Faloutsos, H.V. Jagadish, A.O. Mendelzon, and T. Milo, “A Signature Technique for SimilarityBased Queries,” Proc. Compression and Complexity of Sequences (SEQUENCES '97), June 1997.
[10] C. Faloutsos, A.M. Ranganathan, and Y. Manolopoulos, Fast Subsequence Matching in TimeSeries Databases Proc. 1994 ACMSIGMOD Conf., pp. 419429, May 1994.
[11] A. Guttman, RTrees: A Dynamic Index Structure for Spatial Searching Proc. 1984 ACMSIGMOD Conf., pp. 4757, June 1984.
[12] J.M. Hellerstein, J.F. Naughton, and A. Pfeffer, Generalized Search Trees for Database Systems Proc. 21st Very Large Databases (VLDB) Conf., pp. 562573, Sept. 1995.
[13] S. Hettich and S.D. Bay, The UCI KDD Archive, http:/kdd.ics.uci.edu, 2002.
[14] K.J. Jacob and D. Shasha, FinTime A Financial Time Series Benchmark, http://cs.nyu.edu/cs/faculty/shashafintime.html , Mar. 2000.
[15] T. Kahveci and A. Singh, Variable Length Queries for Time Series Data Proc. Int'l Conf. Data Eng., 2001.
[16] E. Keogh, Exact Indexing of Dynamic Time Warping Proc. 28th Very Large Databases (VLDB) Conf., pp. 406417, Aug. 2002.
[17] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani, Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases Proc. 2001 ACMSIGMOD Conf., pp. 151162, May 2001.
[18] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases Knowledge and Information Systems, vol. 3, no. 3, pp. 263286, 2000.
[19] E. Keogh and S. Kasetty, On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration Proc. Eighth ACMSIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 102111, July 2002.
[20] E. Keogh and M. Pazzani, Scaling up Dynamic Time Warping for Datamining Applications Proc. Sixth ACMSIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 285289, Aug. 2000.
[21] E. Keogh and P. Smyth, A Probabilistic Approach to Fast Pattern Matching in Time Series Databases Proc. Third ACMSIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 2430, Aug. 1997.
[22] S.W. Kim, S. Park, and W.W. Chu, An IndexBased Approach for Similarity Search Supporting Time Warping in Large Sequence Databases Proc. 17th Int'l Conf. Data Eng., pp. 607614, Apr. 2001.
[23] F. Korn, H.V. Jagadish, and C. Faloutsos, Efficiently Supporting Ad Hoc Queries in Large Datasets of Time Sequences Proc. 1997 ACMSIGMOD Conf., pp. 289300, May 1997.
[24] G.B. Moody, MITBIH Database Distribution, http://ecg.mit.eduindex.html, 1999.
[25] Y.S. Moon, K.Y. Whang, and W.S. Han, GeneralMatch: A Subsequence Matching Method in TimeSeries Databases Based on Generalized Windows Proc. 2002 ACMSIGMOD Conf., pp. 382393, June 2002.
[26] Y.S. Moon, K.Y. Whang, and W.K. Loh, DualityBased Subsequence Matching in TimeSeries Databases Proc. 17th Int'l Conf. Data Eng., pp. 263272, Apr. 2001.
[27] S. Park, W.W. Chu, J. Yoon, and C. Hsu, Efficient Searches for Similar Subsequences of Different Lengths in Sequence Databases Proc. Int'l Conf. Data Eng., Feb. 2000.
[28] C.S. Perng, H. Wang, S.R. Zhang, and D.S. Parker, Landmarks: A New Model for SimilarityBased Pattern Querying in Time Series Databases Proc. Int'l Conf. Data Eng., 2000.
[29] I. Popivanov and R.J. Miller, Similarity Search over TimeSeries Data Using Wavelets Proc. Int'l Conf. Data Eng., pp. 212221, 2002.
[30] D. Rafiei and A. Mendelzon, SimilarityBased Queries for Time Series Data Proc. 1997 ACMSIGMOD Conf., pp. 1325, May 1997.
[31] D. Rafiei and A. Mendelzon, Efficient Retrieval of Similar Time Sequences Using DFT Proc. Int'l Conf. Foundations of Data Organizations and Algorithms, Nov. 1998.
[32] T. Seidl and H.P. Kriegel, Optimal MultiStep$k$Nearest Neighbor Search, Proc. 1998 ACMSIGMOD Conf., pp. 154165, May 1998.
[33] H. Shatkay and S.B. Zdonik, “Approximate Queries and Representations for Large Data Sequence,” Proc. Int'l Conf. Data Eng. (ICDE), pp. 536545, 1996.
[34] Z.R. Struzik and A.P.J.M. Siebes, The Haar Wavelet Transform in the Time Series Similarity Paradigm Proc. Principles of Data Mining and Knowledge Discovery, Third European Conf., pp. 1222, Sept. 1999.
[35] Y.L. Wu, D. Agrawal, and A. El Abbadi, A Comparison of DFT and DWT Based Similarity Search in TimeSeries Databases Proc. Ninth ACMCIKM Int'l Conf. Information and Knowledge Management, pp. 488495, Nov. 2000.
[36] B.K. Yi and C. Faloutsos, Fast Time Sequence Indexing for Arbitrary$L_p$Norms Proc. 26th Very Large Databases (VLDB) Conf., pp. 385394, Sept. 2000.
[37] B.K. Yi, H.V. Jagadish, and C. Faloutsos, “Efficient Retrieval of Similar Time Sequences under Time Warping,” Proc. Int'l Conf. Data Eng., 1998.