
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Nicola Leone, Francesco Scarcello, V.S. Subrahmanian, "Optimal Models of Disjunctive Logic Programs: Semantics, Complexity, and Computation," IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 4, pp. 487503, April, 2004.  
BibTex  x  
@article{ 10.1109/TKDE.2004.1269672, author = {Nicola Leone and Francesco Scarcello and V.S. Subrahmanian}, title = {Optimal Models of Disjunctive Logic Programs: Semantics, Complexity, and Computation}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {16}, number = {4}, issn = {10414347}, year = {2004}, pages = {487503}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2004.1269672}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Optimal Models of Disjunctive Logic Programs: Semantics, Complexity, and Computation IS  4 SN  10414347 SP487 EP503 EPD  487503 A1  Nicola Leone, A1  Francesco Scarcello, A1  V.S. Subrahmanian, PY  2004 KW  Disjunctive logic programming KW  computational complexity KW  nonmonotonic reasoning KW  knowledge representation KW  optimization problems. VL  16 JA  IEEE Transactions on Knowledge and Data Engineering ER   
Abstract—Almost all semantics for logic programs with negation identify a
[1] P. Barth and A. Bockmayr, Modelling Discrete Optimization Problems in Constraint Logic Programming Annals of Operations Research, vol. 81, pp. 467496, 1998.
[2] M. Cadoli, On the Complexity of Model Finding for Nonmonotonic Propositional Logics Proc. Fourth Italian Conf. Theoretical Computer Science, M. Venturini Zilli, A. Marchetti Spaccamela, and P. Mentrasti, eds. Singapore: World Scientific, pp. 125139, 1992.
[3] J. Cohen, Constraint Logic Programming Comm. ACM, vol. 33, no. 7, 1990.
[4] P. Dasgupta, P.P. Chakrabarti, A. Dey, S. Ghose, and W. Bibel, Solving Constraint Optimization Problems from CLPStyle Specifications Using Heuristic Search Techniques IEEE Trans. Knowledge and Data Eng., vol. 14, no. 2, pp. 353368, 2002.
[5] M. Dincbas, H. Simonis, and P. Van Hentenryck, Solving Large Combinatorial Optimization Problems in Logic Programming J. Logic Programming, vol. 8, nos. 12, pp. 7593, 1990.
[6] J. Dix and F. Stolzenburg, Computation of NonGround Disjunctive WellFounded Semantics with Constraint Logic Programming Proc. Workshop Nonmonotonic Extensions of Logic Programming, pp. 202224, 1996.
[7] T. Eiter and G. Gottlob, On the Computational Cost of Disjunctive Logic Programming: Propositional Case Annals of Math. and Artificial Intelligence, vol. 15, nos. 34, pp. 289323, 1995.
[8] T. Eiter, G. Gottlob, and H. Mannila, Disjunctive Datalog ACM Trans. Database Systems, vol. 22, no. 3, pp. 364418, 1997.
[9] M.C. Fitting, Logic Programming on a Topological Bilattice Fundamenta Informatica, vol. 11, pp. 209218, 1988.
[10] M. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic Programming Logic Programming: Proc. Fifth Int'l Conf. Symp., pp. 10701080, 1988.
[11] M. Gelfond and V. Lifschitz, Classical Negation in Logic Programs and Disjunctive Databases New Generation Computing, vol. 9, pp. 365385, 1991.
[12] J. Jaffar and J.L. Lassez, Constraint Logic Programming Proc. 14th ACM Symp. Principles of Programming Languages, 1987.
[13] D.S. Johnson, A Catalog of Complexity Classes Handbook of Theoretical Computer Science, J. van Leeuwen, ed., vol. A, chapter 2, B.V. (NorthHolland): Elsevier Science, pp. 67161, 1990.
[14] J. Kadin, ${\rm{P}}^{({\rm NP}[O(\log n)])}$and Sparse TuringComplete Sets for NP J. Computer and System Sciences, vol. 39, no. 3, pp. 282298, 1989.
[15] M. Kifer and V.S. Subrahmanian, Theory of Generalized Annotated Logic Programming and Its Applications J. Logic Programming, vol. 12, no. 4, pp. 335368, 1992.
[16] C. Koch and N. Leone, Stable Model Checking Made Easy Proc. 16th Int'l Joint Conf. Artificial Intelligence, Thomas Dean, ed., Morgan Kaufmann, pp. 7075, Aug. 1999.
[17] V.S. Lakshmanan and F. Sadri, Modeling Uncertainty in Deductive Databases Proc. Int'l Conf. Database Expert Systems and Applications, pp. 724733, Sept. 1994.
[18] V.S. Lakshmanan and F. Sadri, Probabilistic Deductive Databases Proc. Int'l Logic Programming Symp., Nov. 1994.
[19] L.V.S. Lakshmanan and N. Shiri, A Parametric Approach to Deductive Databases with Uncertainty IEEE Trans. Knowledge and Data Eng., vol. 13, no. 4, pp. 554570, July/Aug. 2001.
[20] N. Leone, F. Scarcello, and V.S. Subrahmanian, Optimal Models of Disjunctive Logic Programs: Semantics, Complexity, and Computation Univ. of Maryland Technical Report CSTR4298,www.cs.umd.edu/Library/TRsCSTR4298.ps.Z , 2001.
[21] N. Leone, P. Rullo, and F. Scarcello, Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics and Computation Information and Computation, vol. 135, no. 2, pp. 69112, June 1997.
[22] J.W. Lloyd, Foundations of Logic Programming. SpringerVerlag, 1987.
[23] V.W. Marek and M. Truszczynski, Logic Programming with Cost unpublished manuscript, 1999.
[24] K. Marriot and P.J. Stuckey, Programming with Constraints: An Introduction. MIT Press, 1998.
[25] J. Minker, On Indefinite Data Bases and the Closed World Assumption Proc. Sixth Conf. Automated Deduction, D.W. Loveland, ed., pp. 292308, 1982.
[26] R. Ng and V.S. Subrahmanian, Probabilistic Logic Programming, Information and Computation Information and Computation, vol. 101, no. 2, pp. 150201, Dec. 1992.
[27] I. Niemela, P. Simons, and T. Soininen, Extending and Implementing the Stable Model Semantics Artificial Intelligence, vol. 138, nos. 12, pp. 181234, 2002.
[28] C.H. Papadimitriou, Computational Complexity. AddisonWesley, 1994.
[29] F. Rossi, Constraint (Logic) Programming: A Survey on Research and Applications New Trends in Constraints, 1999.
[30] D. Saccà and C. Zaniolo, Stable Models and NonDeterminism in Logic Programs with Negation Proc. Ninth Symp. Principles of Database Systems, pp. 205217, 1990.
[31] T. Sandholm, Algorithm for Optimal Winner Determination in Combinatorial Auctions Artificial Intelligence, vol. 135, nos. 12, 2002.
[32] E. Shapiro, Logic Programs with Uncertainties: A Tool for Implementing Expert Systems Proc. Int'l Joint Conf. Artificial Intelligence, pp. 529532, 1983.
[33] N. Shiri, On a Generalized Theory of Deductive Databases PhD dissertation, Concordia Univ., Montreal, Canada, Aug. 1997.
[34] M.Y. Vardi, The Complexity of Relational Query Languages (extended abstract) Proc. 14th ACM Symp. Theory of Computing, pp. 137146, 1982.
[35] P. Van Hentenryck, A Logic Language for Combinatorial Optimization Annals of Operations Research, vol. 21, pp. 247274, 1990.
[36] M.H. van Emden, Quantitative Deduction and Its Fixpoint Theory J. Logic Programming, vol. 4, no. 1, pp. 3753, 1986.