This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Practical (t, n) Threshold Proxy Signature Scheme Based on the RSA Cryptosystem
November/December 2003 (vol. 15 no. 6)
pp. 1552-1560

Abstract—In a (t,n) threshold proxy signature scheme, the original signer delegates the power of signing messages to a designated proxy group of n members. Any t or more proxy signers of the group can cooperatively issue a proxy signature on behalf of the original signer, but (t-1) or less proxy signers cannot. Previously, all of the proposed threshold proxy signature schemes have been based on the discrete logarithm problem and do not satisfy all proxy requirements. In this paper, we propose a practical, efficient, and secure (t,n) threshold proxy signature scheme based on the RSA cryptosystem. Our scheme satisfies all proxy requirements and uses only a simple Lagrange formula to share the proxy signature key. Furthermore, our scheme requires only 5 percent of the computational overhead and 8 percent of the communicational overhead required in Kim's scheme.

[1] M. Ben-Or, O. Goldreich, S. Micali, and R.L. Rivest, A Fair Protocol for Signing Contracts IEEE Trans. Information Theory, vol. 36, no. 1, pp. 40-46, 1990.
[2] G.R. Blakley, Safeguarding Cryptographic Keys Proc. Am. Federation of Information Processing Soc., pp. 313-317, 1979.
[3] D. Bonch and M. Franklin, Efficient Generation of Shared RSA Keys Proc. Advance in Cryptology (Crypto '97), vol. 1233, pp. 425-439, 1997.
[4] P. Dasgupta, N. Narasimhan, L.E. Moser, and P.M. Melliar-Smith, MagNET: Mobile Agents for Networked Electronic Trading IEEE Trans. Knowledge and Data Eng., vol. 11, no. 4, pp. 509-525, May/June 1999.
[5] D.E.R. Denning, Cryptography and Data Security. Addison-Wesley, 1983.
[6] Y. Desmedt and Y. Frankel, Threshold Cryptosystems Proc. Advance in Cryptology (Crypto '89), pp. 307-315, 1989.
[7] Y. Desmedt and Y. Frankel, Shared Generation of Authenticators and Signatures Proc. Advance in Cryptology (Crypto '91), pp. 457-469, 1991.
[8] T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms IEEE Trans. Information Theory, vol. 31, no. 4, pp. 469-472, 1985.
[9] Y. Frankel, A Practical Protocol for Large Group Oriented Networks Proc. Advance in Cryptology (Eurocrypt '89), pp. 56-61, 1989.
[10] M.S. Hwang, C.C. Chang, and K.F. Hwang, An Efficient Threshold Decryption Scheme without Session Keys Computers&Electrical Eng., vol. 27, no. 1, pp. 29-35, 2000.
[11] M.S. Hwang, C.C. Chang, and K.F. Hwang, An ElGamal-Like Cryptosystem for Enciphering Large Messages IEEE Trans. Knowledge and Data Eng., vol. 14, no. 2, pp. 445-446, 2002.
[12] M.S. Hwang, I.C. Lin, and E.J.L. Lu, A Secure Nonrepudiable Threshold Proxy Signature Scheme with Known Signers Int'l J. Informatica, vol. 11, no. 2, pp. 1-8, 2000.
[13] S. Kim, S. Park, and D. Won, Proxy Signatures, Revisited Proc. Int'l Conf. Information Security and Comm. Security (ICICS '97), pp. 223-232, 1997.
[14] B. Lee, H. Kim, and K. Kim, Secure Mobile Agent Using Strong Non-Designated Proxy Signature Lecture Notes in Computer Science-Information Security and Privacy, vol. 2119, Springer Verlag, pp. 474-486, 2001.
[15] N.Y. Lee, T. Hwang, and C.H. Wang, On Zhang's Nonrepudiable Proxy Signature Schemes Proc. Australasian Conf. Information Security and Privacy (ACISP '98), pp. 415-422, 1998.
[16] M. Mambo, K. Usuda, and E. Okamoto, Proxy Signatures: Delegation of the Power to Sign Message IEICE Trans. Fundamentals, vol. E79-A, no. 9, pp. 1338-1354, 1996.
[17] M. Mambo, K. Usuda, and E. Okamoto, Proxy Signatures for Delegating Signing Operation Proc. Third ACM Conf. Computer and Comm. Security, pp. 48-57, 1996.
[18] B.C. Neuman, Proxy-Based Authorization and Accounting for Distributed Systems Proc. 13th Int'l Conf. Disctributed Systems, pp. 283-291, 1993.
[19] S. Papastavrou, G. Samaras, and E. Pitoura, Mobile Agent for World Wide Web Distributed Database Access IEEE Trans. Knowledge and Data Eng., vol. 12, no. 5, pp. 802-820, 2000.
[20] T. Pedersen, Distributed Provers with Applications to Undeniable Signatures Proc. Advance in Cryptology (Eurocrypt '91), pp. 221-238, 1991.
[21] T.P. Pedersen, A Threshold Cryptosystem without a Trusted Party Proc. Eurocrypt '91, pp. 522-526, 1991.
[22] R.L. Rivest,A. Shamir, and L.A. Adleman,"A Method for Obtaining Digital Signatures and Public Key Cryptosystems," Comm. ACM, vol. 21, pp. 120-126, 1978.
[23] H.-M. Sun, An Efficient Nonrepudiable Threshold Proxy Signature Scheme with Known Signers Computer Comm., vol. 22, no. 8, pp. 717-722, 1999.
[24] K. Usuda, M. Mambo, T. Uyematsu, and E. Okamoto, Proposal of an Automatic Signature Scheme Using a Compiler IEICE Trans. Fundamentals, vol. E79-A, no. 1, pp. 94-101, 1996.
[25] V. Varabharajan, P. Allen, and S. Black, An Analysis of the Proxy Problem in Distributed Systems Proc. 1991 IEEE CS Symp. Research in Security and Privacy, pp. 225-275, 1991.
[26] K. Zhang, Threshold Proxy Signature Schemes Proc. 1997 Information Security Workshop, pp. 191-197, 1997.

Index Terms:
Lagrange interpolating polynomial, RSA cryptosystem, threshold proxy signature.
Citation:
Min-Shiang Hwang, Eric Jui-Lin Lu, Iuon-Chang Lin, "A Practical (t, n) Threshold Proxy Signature Scheme Based on the RSA Cryptosystem," IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 6, pp. 1552-1560, Nov.-Dec. 2003, doi:10.1109/TKDE.2003.1245292
Usage of this product signifies your acceptance of the Terms of Use.