This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Scalable Semantic Brokering over Dynamic Heterogeneous Data Sources in InfoSleuth™
September/October 2003 (vol. 15 no. 5)
pp. 1082-1098

Abstract—InfoSleuth is an agent-based system for information discovery and retrieval in a dynamic, open environment. Brokering in InfoSleuth is a matchmaking process, recommending agents that provide services to agents requesting services. This paper discusses InfoSleuth's distributed multibroker design and implementation. InfoSleuth's brokering function combines reasoning over both the syntax and semantics of agents in the domain. This means the broker must reason over explicitly advertised information about agent capabilities to determine which agent can best provide the requested services. Robustness and scalability issues dictate that brokering must be distributable across collaborating agents. Our multibroker design is a peer-to-peer system that requires brokers to advertise to and receive advertisements from other brokers. Brokers collaborate during matchmaking to give a collective response to requests initiated by nonbroker agents. This results in a robust, scalable brokering system.

[1] Y. Arens, C.A. Knoblock, and W.-M. Shen, “Query Reformulation for Dynamic Information Integration,” J. Intelligent Information Systems, special issue on intelligent information integration, vol. 6, nos. 2/3, pp. 99–130, 1996.
[2] R. Bayardo et. al., InfoSleuth: Agent-Based Semantic Integration of Information in Open and Dynamic Environments Proc. ACM SIGMOD Int'l Conf. Management of Data, 1997.
[3] D. Moran, D.L. Martin, H. Oohama, and A. Cheyer, Information Brokering in an Agent Architecture Proc. Int'l Conf. Practical Application of Intelligent Agents and Multi-Agent Technology, 1997.
[4] K. Decker and K.P. Sycara, Intelligent Adaptive Information Agents J. Intelligent Information Systems, vol. 9, no. 3, 1997.
[5] K. Decker, M. Williamson, and K. Sycara, Matchmaking and Brokering Proc. Int'l Conf. Multi-Agent Systems, 1996.
[6] J. Fowler, M. Nodine, B. Perry, and B. Bargmeyer, Agent-Based Semantic Interoperability in Infosleuth Sigmod Record, vol. 28, vol. 1, pp. 60-67, Mar. 1999.
[7] M.R. Genesereth, A. Keller, and O.M. Duschka, Infomaster: An Information Integration System Proc. ACM SIGMOD Int'l Conf. Management of Data, 1997.
[8] IONA, White Paper on Orbix Trader technical report, IONA Technologies,http:/www. iona. com/, 1999.
[9] L. Kerschberg, The Role of Intelligent Software Agents in Advanced Information Systems Proc. British Nat'l Conf. Databases, 1997.
[10] D. Kuokka, L. Harada, On Using KQML for Matchmaking Proc. Int'l Conf. MultiAgent Systems, pp. 239-254, 1995.
[11] D. Kuokka and L. Harada, Integrating Information via Matchmaking J. Intelligent Information Systems, vol. 6, no. 2, 1996.
[12] A.Y. Levy, D. Srivastava, and T. Kirk, “Data Model and Query Evaluation in Global Information Systems,” J. Intelligent Information Systems, special issue on networked information discovery and retrieval, vol. 5, no. 2, 1995.
[13] A.Y. Levy, A. Rajaraman, and J.J. Ordille, “Querying Heterogeneous Information Sources Using Source Descriptions,” Proc. 22nd VLDB Conf. (VLDB-96), 1996.
[14] J.G. McGuire, D.R. Kuokka, J.C. Weber, J.M. Tenenbaum, T.R Gruber, and G.R. Olsen, SHADE: Technology for Knowledge-Based Collaborative Engineering J. Concurrent Eng.: Research and Applications, vol. 1, no. 3, 1993.
[15] H. Garcia-Molina et al., The TSIMMIS Approach to Mediation: Data Models and Languages J. Intelligent Information Systems, vol. 8, no. 2, 1997.
[16] M. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh, Active Information Gathering in InfoSleuth Int'l J. Cooperative Information Systems, vol. 9, nos. 1/2, pp. 3-28, 2000.
[17] H. Nwana, D. Ndumu, L. Lee, and J. Collis, ZEUS: A Tool-Kit for Building Distributed Multi-Agent Systems Applied Artifical Intelligence J., vol. 13, no. 1, pp. 129-186, 1999.
[18] OMG, OMG Trading Object Service Specification Technical Report 97-12-02, Object Management Group,http://www.omg.orgcorba, 1997.
[19] A.P. Seth and J.A. Larson,“Federated database systems for managing distributed, heterogeneous andautonomous databases,” ACM Computing Surveys, vol. 22, no. 3, pp. 184-236, September 1990.
[20] K. Sycara, M. Klusch, S. Widoff, and J. Lu, Dynamic Service Matchmaking among Agents in Open Information Environments SIGMOD Record, 1999.
[21] K. Sycara, J. Lu, M. Klusch, and S. Widoff, Matchmaking among Heterogeneous Agents on the Internet Proc. AAAI Spring Symp. Intelligent Agents in Cyberspace, 1999.
[22] A. Tomasic, L. Raschid, and P. Valduriez, Scaling Heterogeneous Databases and the Design of DISCO Proc. Int'l Conf. Distributed Computing Systems, 1996.

Index Terms:
Multibrokering, semantic matching, facilitation, multiagents, information agents, heterogeneous systems.
Citation:
Marian (Misty) Nodine, Anne Hee Hiong Ngu, Anthony Cassandra, William G. Bohrer, "Scalable Semantic Brokering over Dynamic Heterogeneous Data Sources in InfoSleuth™," IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 5, pp. 1082-1098, Sept.-Oct. 2003, doi:10.1109/TKDE.2003.1232266
Usage of this product signifies your acceptance of the Terms of Use.