The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - July/August (2003 vol.15)
pp: 1045-1049
ABSTRACT
<p><b>Abstract</b>—Query-by-example is the most popular query model in recent content-based image retrieval (CBIR) systems. A typical query image includes relevant objects (e.g., Eiffel Tower), but also irrelevant image areas (including background). The irrelevant areas limit the effectiveness of existing CBIR systems. To overcome this limitation, the system must be able to determine similarity based on relevant regions alone. We call this class of queries <it>region-of-interest</it> (ROI) queries and propose a technique for processing them in a sampling-based matching framework. A new similarity model is presented and an indexing technique for this new environment is proposed. Our experimental results confirm that traditional approaches, such as Local Color Histogram and Correlogram, suffer from the involvement of irrelevant regions. Our method can handle ROI queries and provide significantly better performance. We also assessed the performance of the proposed indexing technique. The results clearly show that our retrieval procedure is effective for large image data sets.</p>
INDEX TERMS
Image processing, image indexing and retrieval, regions of interest, arbitrary-shaped queries.
CITATION
Khanh Vu, Kien A. Hua, Wallapak Tavanapong, "Image Retrieval Based on Regions of Interest", IEEE Transactions on Knowledge & Data Engineering, vol.15, no. 4, pp. 1045-1049, July/August 2003, doi:10.1109/TKDE.2003.1209021
392 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool