
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Yasuhiko Morimoto, Takeshi Fukuda, Takeshi Tokuyama, "Algorithms for Finding Attribute Value Group for Binary Segmentation of Categorical Databases," IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 6, pp. 12691279, November/December, 2002.  
BibTex  x  
@article{ 10.1109/TKDE.2002.1047767, author = {Yasuhiko Morimoto and Takeshi Fukuda and Takeshi Tokuyama}, title = {Algorithms for Finding Attribute Value Group for Binary Segmentation of Categorical Databases}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {14}, number = {6}, issn = {10414347}, year = {2002}, pages = {12691279}, doi = {http://doi.ieeecomputersociety.org/10.1109/TKDE.2002.1047767}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Algorithms for Finding Attribute Value Group for Binary Segmentation of Categorical Databases IS  6 SN  10414347 SP1269 EP1279 EPD  12691279 A1  Yasuhiko Morimoto, A1  Takeshi Fukuda, A1  Takeshi Tokuyama, PY  2002 KW  Value groups KW  binary segmentation KW  categorical test KW  decision tree KW  data reduction KW  data mining. VL  14 JA  IEEE Transactions on Knowledge and Data Engineering ER   
Abstract—We consider the problem of finding a set of attribute values that give a high quality binary segmentation of a database. The quality of a segmentation is defined by an objective function suitable for the user's objective, such as "mean squared error," "mutual information," or "
[1] T. Asano and T. Tokuyama, “Topological Walk Revisited,” Proc. Sixth CCCG, 1994.
[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, "Learnability and the VapnikChervonenkis Dimension," J. ACM, vol. 36, pp. 929965, 1989.
[3] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, pp. 123140, 1996.
[4] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and Regression Trees. Wadsworth, 1984.
[5] N.A.R. Center, “Introduction to IND Version 2.1,” GA23247502, 1992.
[6] C.K. Cowan, "Model based synthesis of sensor location," Proc. 1988 IEEE Int'l Conf. Robotics and Automation, pp. 900905, 1988.
[7] Y. Freund and R.E. Schapire, A DecisionTheoretic Generalization of OnLine Learning and an Application to Boosting J. Computer and Systems Science, vol. 55, pp. 119139, 1997.
[8] T. Fukuda, Y. Morimoto, S. Morishira, and T. Tokuyama, Constructing Efficient Decision Trees by Using Optimized Numeric Association Rules Proc. 22nd Int'l Conf. Very Large Databases, Dec. 1996.
[9] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Data Mining Using TwoDimensional Optimized Association Rules: Scheme, Algorithms, and Visualization,” Proc. 1996 ACMSIGMOD Int'l Conf. Management of Data, pp. 1323, June 1996.
[10] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Finding Optimal Intervals Using Computational Geometry,” Proc. Int'l Symp. Algorithm and Computing '96, pp. 5564, 1996.
[11] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, Mining Optimized Association Rules for Numeric Attributes Proc. 1996 ACM Symp. Principles of Database Systems, pp. 182191, 1996.
[12] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Mining Optimized Association Rules for Numeric Attributes,” J. Computer and System Sciences, 1999.
[13] J. Gehrke, R. Ramakrishnan, and V. Ganti, “RainForest—A Framework for Fast Decision Tree Construction of Large Datasets,” Proc. 24th Int'l Conf. Very Large Data Bases, pp. 416427, 1998.
[14] S. Hasegawa, H. Imai, and M. Ishiguro, “$\big. \epsilon{\hbox{}}{\rm{Approximations}}\bigr.$of kLabel Spaces,” Theoretical Computer Science, vol. 137, pp. 145157, 1995.
[15] D. Haussler and E. Welzl, “EpsilonNets and Simplex Range Queries,” Discrete and Computational Geometry, vol. 2, pp. 127151, 1987.
[16] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A Fast Scalable Classifier for Data Mining,” Proc. Fifth Int'l Conf. Extending Database Technology, pp. 1832, 1996.
[17] Y. Morimoto, T. Fukuda, S. Morishita, and T. Tokuyama, “Implementation and Evaluation of Decision Trees with Range and Region Splitting,” Constraint, vol. 2, no. 3/4, pp. 401427, Dec. 1997.
[18] Y. Morimoto, H. Ishii, and S. Morishita, “Efficient Construction of Regression Trees with Range and Region Splitting,” Proc. 23nd VLDB Conf., pp. 166175, 1997.
[19] P.M. Murphy and M.J. Pazzani, “Id2of3: Constructive Induction of mofn Concepts for Discriminators in Decision Trees,” Proc. Eighth Int'l Workshop Machine Learning, pp. 183187, 1991.
[20] Z. Pawlak, J.W. GrzymalaBusse, R. Slowinski, and W. Ziarko, “Rough Sets,” Comm. ACM, vol. 38, no. 11, pp. 89–95, 1995.
[21] F.P. Preparata and M.I. Shamos, Computational Geometry. SpringerVerlag, 1985.
[22] J.R. Quinlan, C4.5: Programs for Machine Learning,San Mateo, Calif.: Morgan Kaufman, 1992.
[23] J.R. Quinlan, “Bagging, Boosting, and C4.5,” Proc. 13th Nat'l Conf. Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conf., pp. 725730, 1996.
[24] R. Rastogi and K. Shim, “PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning,” Proc. 24th Int'l Conf. Very Large Data Bases, pp. 404415, 1998.
[25] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Parallel Classifier for Data Mining,” Proc. 22th Int'l Conf. Very Large Databases, Sept. 1996.
[26] K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Computing Optimized Rectilinear Regions for Association Rules,” Proc. KDD'97, pp. 96103, Aug. 1997.