This Article 
 Bibliographic References 
 Add to: 
An Efficient Path Computation Model for Hierarchically Structured Topographical Road Maps
September/October 2002 (vol. 14 no. 5)
pp. 1029-1046

Abstract—In this paper, we have developed a \big. HiTi\bigr. (Hierarchical MulTi) graph model for structuring large topographical road maps to speed up the minimum cost route computation. The \big. HiTi\bigr. graph model provides a novel approach to abstracting and structuring a topographical road map in a hierarchical fashion. We propose a new shortest path algorithm named \big. SPAH\bigr., which utilizes \big. HiTi\bigr. graph model of a topographical road map for its computation. We give the proof for the optimality of \big. SPAH\bigr.. Our performance analysis of \big. SPAH\bigr. on grid graphs showed that it significantly reduces the search space over existing methods. We also present an in-depth experimental analysis of HiTi graph method by comparing it with other similar works on grid graphs. Within the \big. HiTi\bigr. graph framework, we also propose a parallel shortest path algorithm named \big. ISPAH\bigr.. Experimental results show that inter query shortest path problem provides more opportunity for scalable parallelism than the intra query shortest path problem.

[1] R. Agrawal and H. Jagadish, “Materialization and Incremental Update of Path Information,” Proc. IEEE Fifth Int'l Conf. Data Eng., pp. 374-383, 1989.
[2] R. Agrawal, S. Dar, and H. Jagadish, “Direct Transitive Closure Algorithms: Design and Performance Evaluation,” ACM Trans. Database Systems, vol. 15, no. 3, pp. 427-458, Sept. 1990.
[3] R. Agrawal and J. Kiernan, " An Access Structure for Generalized Transitive Closure Queries," Proc. Ninth Int'l Conf. Data Eng., pp. 429-438. IEEE, Apr. 1993.
[4] R. Agrawal and H.V. Jagadish, "Algorithms for Searching Massive Graphs," IEEE Trans. Knowledge and Data Eng., vol. 6, no. 2, Apr. 1994.
[5] G. Ausiello, G. Italiano, A. Marchetti, and U. Nanni, ”Incremental Algorithms for Minimal Length Paths,” Proc. First Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 12-20, 1990.
[6] J. Banerjee, S. Kim, W. Kim, and J. Garza, "Clustering a DAG for CAD Databases," IEEE Trans. Software Eng., vol. 14, no. 11, pp. 1,684-1,699, Nov. 1988.
[7] E. Charniak and D. McDermott, Introduction to Artificial Intelligence. Addison-Wesley, 1985.
[8] S. Dar and R. Ramakirishnan, “A Performance Study of Transitive Closure Algorithms,” Proc. ACM-SIGMOD 1994 Int'l Conf. Management of Data, pp. 454-465, 1994.
[9] T. Dean, J. Firby, and D. Miller, “Hierarchical Planning Involving Deadlines, Travel Time, and Resources,” Computational Intelligence, vol. 4, no. 4, pp. 381-398, 1988.
[10] D. Galperin, “On the Optimality of A*,” Artificial Intelligence, vol. 8, no. 1, pp. 69-76, 1977.
[11] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Gracia-Molina, “Proximity Search in Databases,” Proc. 24th VLDB Conf., pp. 26-37, 1998.
[12] M. Houstma, P. Apers, and G. Schipper, “Data Fragmentation for Parallel Transitive Closure Strategies,” Proc. IEEE Ninth Int'l Conf. Data Eng., pp. 447-456, 1993.
[13] K. Hua, J. Su, and C. Hua, “Efficient Evaluation of Traversal Recursive Queries Using Connectivity Index,” Proc. IEEE Ninth Int'l Conf. Data Eng., pp. 549-558, 1993.
[14] Y. Huang, N. Jing, and E. Rundensteiner, “Hierarchical Path Views: A Model Based on Fragmentation and Transportation Road Types,” Proc. Third ACM Workshop Geographic Information Systems, pp. 93-100, 1995.
[15] Y. Huang, N. Jing, and E. Rundensteiner, “Effective Graph Clustering for Path Queries in Digital Map Databases,” Proc. Fifth Int'l Conf. Information and Knowledge Management, pp. 215-222, 1996.
[16] Y. Ioannidis and R. Ramakirishnan, “Efficient Transitive Closure Algorithms,” Proc. 14th VLDB Conf., pp. 382-394, 1988.
[17] Y. Ioannidis, R. Ramakrishnan, and L. Winger, "Transitive Closure Algorithms Based on Graph Traversal," ACM Trans. Database Systems, vol. 18, no. 3, Sept. 1993.
[18] K. Ishikawa, M. Ogawa, S. Azume, and T. Ito, “Map Navigation Software of the Electro Multivision of the '91 Toyota Soarer,” Proc. Int'l Conf. Vehicle Navigation and Information Systems (VNIS IVHS), pp. 463-473, 1991.
[19] H. Jagadish, “A Compression Technique to Materialize Transitive Closure,” ACM Trans. Database Systems, vol. 15, no. 4, pp. 558-598, Dec. 1990.
[20] B. Jiang, “A Suitable Algorithm for Computing Partial Transitive Closures in Databases” Proc. IEEE Sixth Int'l Conf. Data Eng., pp. 264-271, 1990.
[21] N. Jing, Y. Huang, and E. Rundensteiner, “Hierarchical Optimization of Optimal Path Finding for Transportation Applications,” Proc. Fifth Int'l Conf. Information and Knowledge Management, pp. 261-268, 1996.
[22] N. Jing, Y. Huang, and E. Rundensteiner, “Hierarchical Encoded Path Views for Path Query Processing: An Optimal Model and Its Performance Evaluation,” IEEE Trans. Knowledge and Data Eng., vol. 10, no. 3, pp. 409-432, May/June 1998.
[23] V. King and G. Sagert, ”A Fully Dynamic Algorithm for Maintaining the Transitive Closure,” Proc. 31st Ann. ACM Symp. Theory of Computing, pp. 492-498, 1999.
[24] R. Kung, E. Hanson, Y. Ioannnidis, T. Sellis, L. Shapiro, and M. Stonebraker, “Heuristic Search in Data Base System,” Proc. First Int'l Workshop Expert Database Systems, pp. 96-107, Oct. 1984.
[25] P.A. Larson and V. Deshpande, "A File Structure Supporting Traversal Recursion," Proc. SIGMOD Conf., pp. 243-252, ACM, 1989.
[26] R. Lipton and R. Tarjan, “Application of a Planar Seperator Theorem,” SIAM J. Computing, vol. 9, no. 3, pp. 615-627, 1980.
[27] B. Liu, S. Choo, S. Lok, S. Leong, S. Lee, F. Poon, and H. Tan, “Integrating Case-Based Reasoning, Knowledge-Based Approach and Dijkstra Algorithm for Route Finding” Proc. 10th Conf. Artificial Intelligence for Applications (CAIA '94), pp. 149-155, 1994.
[28] W. McCormickJr., P. Schweitzer, and T. White, “Problem Decomposition and Data Reorganization by a Clustering Technique,” Operation Research, vol. 20, no. 5, pp. 993-1009, 1972.
[29] G. Miller, S. Teng, and S. Vavasis, “A Unified Geometric Approach to Graph Separators,” Proc. 31st Ann. Symp. Foundations of Computer Science, pp. 538-547, 1991.
[30] G. Miller, S. Teng, W. Thurston, and S. Vavasis, “Automatic Mesh Partitioning,” Sparse Matrix Computations: Graph Theory Issues and Algorithms, A. George, J. Gilbert, and J. Liu, eds. (An IMA Workshop Volume), New York: Springer-Verlag, 1993.
[31] T. Mohr and C. Pasche, “A Parallel Shortest Path Algorithm,” Computing, vol. 40, pp. 281-292, 1988.
[32] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, Reading, Mass., 1984.
[33] G. Qadah, L. Henschen, and J. Kim, “Efficient Algorithms for the Instantiated Transitive Closure Queries,” IEEE Trans. Software Eng., vol. 17, no. 3, pp. 296-309, Mar. 1991.
[34] S. Rizzi, “Genetic Operators for Hierarchical Graph Clustering,” Pattern Recognition Letters, vol. 19, no. 14, pp. 1293-1300, 1998.
[35] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola, “Traversal Recursion: A Practical Approach to Supporting Recursive Applications,” Proc. IEEE Third Int'l Conf. Data Eng., pp. 580-590, 1987.
[36] E. Sacerdoti, “Planning in a Hierarchy of Abstraction Spaces,” Artificial Intelligence, vol. 5, no. 2, pp. 115-135, 1974.
[37] J. Shapiro, J. Waxman, and D. Nir, “Level Graphs and Approximate Shortest Path Algorithms,” Networks, vol. 22, pp. 691-717, 1992.
[38] S. Shekhar, A. Kohli, and M. Coyle, "Path Computation Algorithms for Advanced Traveler Information System," Proc. Ninth Int'l Conf. Data Eng., pp. 31-39, IEEE, Apr. 1993.
[39] S. Shekhar, A. Fetterer, and B. Goyal, “Materialization Trade-Offs in Hierarchical Shortest Path Algorithms,” Proc. 1997 Symp. Spatial Databases, 1997.
[40] S. Shekhar and D. Liu, “CCAM: A Connectivity-Clustered Access Method for Networks and Network Computations,” IEEE Trans. Knowledge and Data Eng., vol. 9, no. 1, pp. 102-119, 1997.
[41] S. Timpf, G. Volta, D. Pollock, and M. Egenhofer, “A Conceptual Model of Wayfinding Using Multiple Levels of Abstraction,” Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, A.U. Frank, I. Campari, and U. Formentini, eds., Springer-Verlag, 1992.
[42] I. Toroslu and G. Qadah, “The Efficient Computation of Strong Partial Transitive-Closures,” Proc. IEEE Ninth Int'l Conf. Data Eng., pp. 530-537, 1993.
[43] T. Yang, S. Shekhar, B. Hamidzadeh, and P. Hancock, “Path Planning and Evaluation in IVHS Databases” IEEE Int'l Conf. Vehicle Navigation and Information Systems (VNIS IVHS), pp. 283-290, 1991.

Index Terms:
Shortest Path, digital road maps, grid graphs, parallel shortest path computation, HiTi graph model.
Sungwon Jung, Sakti Pramanik, "An Efficient Path Computation Model for Hierarchically Structured Topographical Road Maps," IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 5, pp. 1029-1046, Sept.-Oct. 2002, doi:10.1109/TKDE.2002.1033772
Usage of this product signifies your acceptance of the Terms of Use.