
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
P. Dasgupta, P.P. Chakrabarti, A. Dey, S. Ghose, W. Bibel, "Solving Constraint Optimization Problems from CLPStyle Specifications Using Heuristic Search Techniques," IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 2, pp. 353368, March/April, 2002.  
BibTex  x  
@article{ 10.1109/69.991721, author = {P. Dasgupta and P.P. Chakrabarti and A. Dey and S. Ghose and W. Bibel}, title = {Solving Constraint Optimization Problems from CLPStyle Specifications Using Heuristic Search Techniques}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {14}, number = {2}, issn = {10414347}, year = {2002}, pages = {353368}, doi = {http://doi.ieeecomputersociety.org/10.1109/69.991721}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Solving Constraint Optimization Problems from CLPStyle Specifications Using Heuristic Search Techniques IS  2 SN  10414347 SP353 EP368 EPD  353368 A1  P. Dasgupta, A1  P.P. Chakrabarti, A1  A. Dey, A1  S. Ghose, A1  W. Bibel, PY  2002 KW  constraint optimization KW  logic programming KW  heuristic search VL  14 JA  IEEE Transactions on Knowledge and Data Engineering ER   
This paper presents a framework for efficiently solving logic formulations of combinatorial optimization problems using heuristic search techniques. In order to integrate cost, lower bound and upper bound specifications with conventional logic programming languages, we augment a CLP language with embedded constructs for specifying the cost function and with a few higher order predicates for specifying the lower and upper bound functions. We illustrate how this simple extension vastly enhances the ease with which optimization problems involving combinations of Min and Max can be specified in the extended language CLP* and show that CSLDNF resolution schemes are not efficient for solving optimization problems specified in this language. Therefore, we describe how any problem specified using CLP* can be converted into an implicit AND/OR graph, and present an algorithm
[1] H. Berliner, “The$B^*$Tree Search Algorithm,” Artificial Intelligence, vol. 12, pp. 2340, 1979.
[2] W. Bibel and P. Programmieren, GI—2. Fachtagungüber Automatentheorie und Formale Sprachen, pp. 274283, Berlin: Springer, 1975.
[3] W. Bibel, Automated Theorem Proving, second ed. Vieweg: Verlag, Braunschweig, 1987.
[4] W. Bibel, “Towards Predicative Programming,” Automating Software Design, pp. 405423, 1992.
[5] W. Kafer and H. Schoning, "Mapping a Version Model to a ComplexObject Data Model," Proc. Int'l Conf. Data Eng.,Tempe, Ariz., pp. 348357, Feb. 1992.
[6] S. Bistarelli, U. Montanari, and F. Rossi, “SemiringBased Constraint Logic Programming,” Proc. 15th Ann. Int'l Joint Conf. Artifical Intelligence, IJCAI '97, pp. 352357, 1997.
[7] Y. Caseau and F. Laburthe, “SALSA: A Language for Search Algorithms,” Proc. Fourth Int'l Conf. Principles and Practice of Constraint Programming CP '98, pp. 310324, 1998.
[8] P.P. Chakrabarti, S. Ghose, A. Acharya, and S.C. De Sarkar, "Heuristic Search in Restricted Memory," Artificial Intelligence, vol. 41, pp. 197221, 1989.
[9] P.P. Chakrabarti and S. Ghose, “A General Best First Search Algorithm in AND/OR Graphs,” J. Algorithms, vol. 13, pp. 177187, 1992.
[10] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel, “Un Système de Communication HommeMachine en Français,” technical report, UniversitéAix–Marseille, 1973.
[11] T.H. Cormen,C.E. Leiserson, and R.L. Rivest,Introduction to Algorithms.Cambridge, Mass.: MIT Press/McGrawHill, 1990.
[12] P. Dasgupta, P.P. Chakrabarti, A. Dey, S. Ghose, and W. Bibel, “A Heuristic Search Approach to Effectively Solve Constrained Optimization Problems from Logical Specifications,” Proc. Int'l Conf. Knowledge Based Systems KBCS'98, pp. 3949, 1998.
[13] F. Fages, “On the Semantics of Optimization Predicates in CLP Languages,” Proc. 13th Foundation of Software Technology and Theoretical Computer Science, pp. 193204, 1993.
[14] F. Fages, “Constructive Negation by Pruning and Optimization HigherOrder Predicates for CLP and CC Languages,” Constraint Programming: Basics and Trends, pp. 6889, 1995.
[15] F. Fages, “Constructive Negation by Pruning,” J. Logic Programming, vol. 32, no. 2, pp. 85118, 1997.
[16] J. Hooker, G. Ottosson, E.S. Thorsteinsson, and HJ. Kim, “A Scheme for Unifying Optimization and Constraint Satisfaction Methods,” Knowledge Engineering Review, (to appear) 1999.
[17] T. Ibaraki, “Game Solving Procedure$H^*$is Unsurpassed,” Discrete Algorithms and Complexity, D.S. Johnson, ed., pp. 185200, New York: Academic Press, 1987.
[18] J. Jaffar and M.J. Maher, “Constraint Logic Programming: A Survey,” J. Logic Programming, vol. 19/20, pp. 503582, 1994.
[19] R.E. Korf, "Depthfirst IterativeDeepening: An Optimal Admissible Tree Search," Artificial Intelligence, vol. 27, no. 1, pp. 97109, 1985.
[20] R.E. Korf, “Linear Space BestFirst Search,” Artificial Intelligence, vol. 62, pp. 4178, 1993.
[21] D.E. Knuth and R.W. Moore, “An Analysis Of AlphaBeta Pruning,” Artificial Intelligence, vol. 6, pp. 293326, 1975.
[22] K. Kunen, “Negation in Logic Programming,” J. Logic Programming, vol. 4, no. 3, pp. 289308, 1987.
[23] K. Marriott and P.J. Stuckey, “Semantics for CLP Programs with Optimization,” ACM Letters on Programming Languages and Systems, vol. 2, pp. 197212, 1993.
[24] M. Moser et al., “SETHEO and ESETHEO: The CADE13 Systems,” J. Automated Reasoning, vol. 18, pp. 237246, 1997.
[25] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization. New York: Wiley, 1988.
[26] N.J. Nilsson, Principles of Artificial Intelligence. Morgan Kaufmann, 1980.
[27] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, AddisonWesley, Reading, Mass., 1984.
[28] S.J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, Upper Saddle River, N.J., 1994.
[29] U.K. Sarkar, P.P. Chakrabarti, S. Ghose, and S.C. DeSarkar, “Reducing Reexpansions in Iterative Deepening Search by Controlling Cutoff Bounds,” Artificial Intelligence, vol. 50, pp. 207221, 1991.
[30] C. Schulte and G. Smolka, “Encapsulated Search for HigherOrder Concurrent Constraint Programming,” Proc. Int'l Logic Programming Symp., pp. 505520, 1994.
[31] P. van Hentenryck, Constraint Satisfaction in Logic Programming, Logic Programming Series, MIT Press, Cambridge, Mass., 1989.
[32] P. Van Hentenryck, H. Simonis, and M. Dincbas, “Constraint Satisfaction Using Constraint Logic Programming,” Artificial Intelligence, vol. 58, pp. 113159, 1992.
[33] P. Van Hentenryck, L. Michel, and Y. Deville, Numerica—A Modelling Language for Global Optimization. Cambridge, Mass.: MIT Press 1997.
[34] P. Van Hentenryck, “Constraint Programming,” Encyclopedia of Science and Technology, M. Dekker, ed. 1997.
[35] P. Van Hentenryck, The OPL Optimization Programming Language. Cambridge, Mass: MIT Press, 1999.