The Community for Technology Leaders
RSS Icon
Issue No.01 - January/February (2002 vol.14)
pp: 140-155
<p><b>Abstract</b>—Our goal with this paper is to contribute a common theoretical framework for studying the performance of disk-storage devices. Understanding the performance behavior of these devices will allow prediction of the I/O cost in modern applications. Current disk technologies differ in terms of the fundamental modeling characteristics, which include the magnetic/optical nature, angular and linear velocities, storage capacities, and transfer rates. Angular and linear velocities, storage capacities, and transfer rates are made constant or variable in different existing disk products. Related work in this area has studied <b>C</b>onstant <b>A</b>ngular <b>V</b>elocity (<b>CAV</b>) magnetic disks and <b>C</b>onstant <b>L</b>inear <b>V</b>elocity (<b>CLV</b>) optical disks. In this work, we present a comprehensive analytical model, validated through simulations, for the random retrieval performance of disk devices which takes into account all the above-mentioned fundamental characteristics and includes, as special cases, all the known disk-storage devices. Such an analytical model can be used, for example, in the query optimizer of large traditional databases as well as in an admission controller of multimedia storage servers. Besides the known models for magnetic CAV and optical CLV disks, our unifying model is also reducible to a model for a more recent disk technology, called <it>zoned disks</it>, the retrieval performance of which has not been modeled in detail before. The model can also be used to study the performance retrieval of possible future technologies which combine a number of the above characteristics and in environments containing different types of disks (e.g., magnetic-disk-based secondary storage and optical-disk-based tertiary storage). Using our model, we contribute an analysis of the performance behavior of zoned disks and we compare it against that for the traditional CAV disks, as well as against that of some possible/future technologies. This allows us to gain insights into the fundamental performance trade-offs.</p>
performance modeling and prediction, disk technologies, zoned disks
P. Triantafillou, S. Christodoulakis, C.A. Georgiadis, "A Comprehensive Analytical Performance Model for Disk Devices under Random Workloads", IEEE Transactions on Knowledge & Data Engineering, vol.14, no. 1, pp. 140-155, January/February 2002, doi:10.1109/69.979978
36 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool